Page 225 - 《精细化工》2021年第4期
P. 225

第 4 期                     房   成,等:  高固含量丙烯酸酯乳液压敏胶的制备及性能                                  ·859·


            [16]  JOVANOVIC R, MCKENNA T F, DUBE M A. Empirical modeling   Macromolecular Science Chemistry, 1983, 19: 559-578.
                 of butyl acrylate/vinyl acetate/acrylic  acid emulsion-based pressure   [22]  PLESSIS C, ARZAMENDI G, ALBERDI J M, et al. Intramolecular
                 sensitive adhesives[J]. Macromolecular Materials and Engineering,   chain transfer to polymer in the emulsion  polymerization  of
                 2004, 289: 467-474.                               2-ethylhexyl acrylate[J]. Macromolecules, 2001, 34: 6138-6143.
            [17]  LI S X (李少香), GUAN Y D (关迎东). Design of glass transition   [23]  CHAUVET J, ASUA J M, LEIZA J  R. Independent control of sol
                 temperature (GTT) of epoxy-acrylic latex for woodenware coatings   molar mass and gel content in acrylate polymer/latexes[J]. Polymer,
                 and the relation to monomer conversion ratio[J]. China Coatings (中  2005, 46: 9555-9561.
                 国涂料), 2010, 25(9): 24-29.                     [24]  GONZALEZ I, ASUA J M, LEIZA J R. The role of methyl
            [18]  LU X C, CAO G, NIU Z F, et al. Viscoelastic and adhesive properties   methacrylate on branching and gel formation in the emulsion
                 of single-component thermo-resistant acrylic pressure sensitive   copolymerization of BA/MMA[J]. Polymer, 2007, 48: 2542-2547.
                 adhesives[J]. Journal of Applied Polymer Science, 2014, 131(7): 40086.   [25]  ASUA M,  DEGRANDI-CONTRAIRES E, LOPEZ A,  et al. High-
            [19]  OZLEM S, HACALOGLU J. Thermal degradation  of poly(n-butyl   shear-strength waterborne polyurethane/acrylic soft adhesives[J].
                 methacrylate), poly(n-butyl acrylate)  and poly(t-butyl acrylate)[J].   Macromolecular Materials and Engineering, 2013, 298: 612-623.
                 Journal of Analytical and Applied Pyrolysis, 2013, 104: 161-169.     [26]  GUO J, SEVERTSON S J. Optimizing the monomer composition of
            [20]  RUAN H M (阮红梅), ZHANG L J (张良均), CHEN G (陈刚), et al.   acrylic  water-based pressure-sensitive adhesives to minimize their
                 Study on synthesis of self-phosphorizing styrene-acrylonitrile   impact on recycling operations[J]. Industrial &  Engineering
                 anti-rust emulsion and its properties[J]. Moderm Paint Finishing (现  Chemistry Research, 2007, 46: 2753-2759.
                 代涂料与涂装), 2018, 21(10): 10-13.                 [27]  KAJTNA J, LIKOZAR  B, GOLOB J,  et al.  The influence of the
            [21]  MALHOTRA S L, MINH  L Y, BLANCHARD L P. Thermal   polymerization on properties of an ethylacrylate/2-ethyl hexylacrylate
                 decomposition and glass transition temperature of poly(ethyl   pressure-sensitive adhesive suspension[J]. International Journal of
                 methacrylate)  and poly (n-butyl methacrylate)[J]. Journal of   Adhesion and Adhesives, 2008, 28: 382-390.

            (上接第 661 页)                                        [98]  WAN S J,  LI  Y  C, PENG J S,  et al. Synergistic toughening of
            [86]  ZHAN Y H, LAVORGNA M, BUONOCORE G,  et al. Enhancing   graphene oxide-molybdenum disulfide-thermoplastic polyurethane
                 electrical conductivity of rubber composites  by constructing   ternary artificial nacre[J]. ACS Nano, 2015, 9(1): 708-714.
                 interconnected network of self-assembled graphene  with latex   [99]  HUANG T, HE P,  WANG  R R,  et al. Porous  fibers composed  of
                 mixing[J]. Journal of Materials Chemistry, 2012, 22(21): 10464-10468.   polymer nanoball  decorated graphene for wearable and  highly
            [87]  HE C  Z, SHE X  D, PENG Z,  et al. Graphene networks and their   sensitive strain sensors[J]. Advanced Functional Materials, 2019,
                 influence on free-volume properties of graphene-epoxidized natural   29(45): 1903732.
                 rubber composites with a segregated structure: Rheological and positron   [100]  ZHOU Y J, ZHAN P F, REN M N, et al. Significant stretchability
                 annihilation studies[J]. Physical Chemistry Chemical Physics, 2015,   enhancement of a  crack-based strain  sensor combined with high
                 17(18): 12175-12184.                              sensitivity and superior durability for  motion monitoring[J]. ACS
            [88]  LIN Y, LIU S Q, LIU L.  A new  approach to construct three   Applied Materials & Interfaces, 2019, 11(7): 7405-7414.
                 dimensional segregated graphene structures in rubber composites for   [101]  LIU H, LI Q M, BU Y B,  et al. Stretchable conductive nonwoven
                 enhanced conductive, mechanical and barrier properties[J]. Journal of   fabrics with self-cleaning capability for  tunable wearable strain
                 Materials Chemistry C, 2016, 4(12): 2353-2358.    sensor[J]. Nano Energy, 2019, 66: 104143.
            [89]  POTTS J R, SHANKAR O,  DU L,  et al. Processing-morphology-   [102]  LIU Z Y, QI D P,  HU G Y,  et al. Surface strain redistribution on
                 property relationships and composite theory analysis  of reduced   structured microfibers to enhance sensitivity of fiber-shaped stretchable
                 graphene oxide/natural rubber  nanocomposites[J]. Macromolecules,   strain sensors[J]. Advanced Materials, 2018, 30(5): 1704229.
                 2012, 45(15): 6045-6055.                      [103]  CHEN H, LV L, ZHANG J, et al. Enhanced stretchable and sensitive
            [90]  PANG H, XU L, YAN D X, et al. Conductive polymer composites   strain sensor  via controlled strain  distribution[J].  Nanomaterials,
                 with segregated structures[J]. Progress in Polymer Science, 2014,   2020, 10(2): 218.
                 39(11): 1908-1933.                            [104]  BAI L, XU Y, JIANG Y, et al. Transfer method of crumpled graphene
            [91]  PENG J S, CHEN Q F. High-performance nanocomposites inspired   and its application for  human strain monitoring[J]. Sensors and
                 by nature[J]. Advanced Materials, 2017, 29(45): 1702959.   Actuators A: Physical, 2017, 260(15): 153-160.
            [92]  ZHANG  Y Y, PENG J S, LI M Z,  et al. Bioinspired supertough   [105]  PU J H, ZHAO X, ZHA X J, et al. A strain localization directed crack
                 graphene fiber through sequential interfacial interactions[J]. ACS   control strategy for designing MXene-based customizable sensitivity
                 Nano, 2018, 12(9): 8901-8908.                     and sensing range strain sensors for full-range human motion
            [93]  CUI W, LI M Z, LIU J  Y,  et al.  A  strong integrated strength and   monitoring[J]. Nano Energy, 2020, 74: 104814.
                 toughness artificial nacre based on dopamine cross-linked graphene   [106]  DENG C H, GAO  P X, LAN L F,  et al. Ultrasensitive and highly
                 oxide[J]. ACS Nano, 2014, 8(9): 9511-9517.        stretchable multifunctional strain sensors with timbre-recognition
            [94]  WANG Y, LI T, MA P M, et al. Artificial nacre from supramolecular   ability based on vertical graphene[J]. Advanced Functional Materials,
                 assembly of graphene oxide[J]. ACS Nano, 2018, 12(6): 6228-6235.   2019, 29(51): 1907151.
            [95]  WAN S J, ZHANG Q, ZHOU X H, et al. Fatigue resistant bioinspired   [107]  RAMIREZ J, RODRIQUEZ D, URBINA A D, et al. Combining high
                 composite  from synergistic two-dimensional  nanocomponents[J].  ACS   sensitivity and dynamic range wearable thin film composite strain
                 Nano, 2017, 11(7): 7074-7083.                     sensors of graphene, ultrathin palladium, and PEDOT:PSS[J]. ACS
            [96]  PARK S, LEE K  S, BOZOKLU G,  et al. Graphene oxide papers   Applied Nano Materials, 2019, 2(4): 2222-2229.
                 modified by divalent ions-enhancing  mechanical properties  via   [108]  LIN S Y, ZHAO X L, JIANG X, et al. Highly stretchable, adaptable,
                 chemical cross-linking[J]. ACS Nano, 2008, 2(3): 572-578.   and durable strain sensing based on a bioinspired dynamically cross-
            [97]  WAN S J, XU F Y, JIANG L,  et al. Superior fatigue resistant   linked graphene polymer composite[J]. Small, 2019, 15(19): 1900848.
                 bioinspired graphene-based nanocomposite via synergistic interfacial   [109]  GUO Q Q, ZHANG  X  X, ZHAO F Y,  et al. Protein-inspired
                 interactions[J].  Advanced Functional Materials, 2017, 27(10):   self-healable Ti 3C 2 MXenes/rubber-based  supramolecular  elastomer
                 1605636.                                          for intelligent sensing[J]. ACS Nano, 2020, 14(3): 2788-2797.
   220   221   222   223   224   225   226   227   228   229   230