Page 149 - 《精细化工》2021年第8期
P. 149

第 8 期               史雨生,等:  镁-三苯胺基金属有机框架的制备及其光/Lewis 酸协同催化                              ·1643·


            活性酯,促使其发生裂解生成相应的烷基自由基,                             属催化剂(如联吡啶铱),以 NHPI 活性酯作为烷基
            生成的烷基自由基中间体对苯乙烯的烯烃双键进行                             自由基前体,成功地将系列苯乙烯类底物转化成 α-
            自由基加成,生成相应的苄基自由基中间体Ⅳ;该                             烷基苯乙酮。Mg-TCA 展现出优异的光催化性能,
            苄基自由基中间体随后与处于氧化态的 Mg-TCA                     •+    其非均相特性使得该催化剂可以被重复利用至少 2
            发生单电子转移,促使催化剂复原,同时生成相应                             次,其催化活性没有明显降低,进一步展现出在精
            的苄基碳正离子中间体Ⅴ;最后,该碳正离子中间                             细化工领域的应用前景。
            体被 DMSO 氧化,生成最终产物。                                    (4)提出了可能的反应机理。在金属有机框架
                                                               Mg-TCA 内发生了 Lewis 酸和光协同催化的过程,
                                                               Mg-TCA 的金属节点对 NHPI 活性酯的吸附作用可
                                                               以拉近活性酯和光催化中心的距离,有利于促进二
                                                               者之间光致电子转移,从而导致催化效率的提升。
                                                               这种 Lewis 酸和光协同催化的反应模式在精细化工
                                                               中间体的合成等领域也具有一定的应用前景。

                                                               参考文献:
                                                               [1]   CANNALIRE R, PELLICCIA S, SANCINETO L, et al. Visible light
                                                                   photocatalysis in the late-stage functionalization of pharmaceutically
                                                                   relevant compounds[J]. Chemical Society Reviews, 2021, 50(2):

                                                                   766-897.
             图 9   Ⅱa、Mg-TCA 及 Mg-TCA 吸附Ⅱa 的 FTIR 谱图           [2]   STRIETH-KALTHOFF F, JAMES M J, TEDERS M, et al. Energy
                                                                   transfer catalysis mediated by visible light: Principles, applications,
            Fig. 9    FTIR spectra of  Ⅱa, Mg-TCA and Mg-TCA adsorbing   directions[J]. Chemical Society Reviews, 2018, 47(19): 7190-7202.
                  Ⅱa                                           [3]   LANG X J, ZHAO J C, CHEN X D. Cooperative photoredox
                                                                   catalysis[J]. Chemical Society Reviews, 2016, 45(11): 3026-3038.
                                                               [4]   CHENG W M, SHANG  R. Transition metal-catalyzed organic
                                                                   reactions  under visible light: Recent developments and  future
                                                                   perspectives[J]. ACS Catalysis, 2020, 10(16): 9170-9196.
                                                               [5]   SKUBI K L,  BLUM T R,  YOON  T  P. Dual catalysis strategies in
                                                                   photochemical synthesis[J]. Chemical Reviews, 2016, 116(17):
                                                                   10035-10074.
                                                               [6]   YAMAMOTO H. Lewis acids in organic synthesis[M]. Wiley-VCH:
                                                                   Verlag GmbH, 2000: 59-88.
                                                               [7]   HOUK K N, STROZIER R W. Lewis acid catalysis of Diels-Alder
                                                                   reactions[J]. Journal of the American Chemical Society, 1973,
                                                                   95(12): 4094-4096.
                                                               [8]   KOBAYASHI S, SUGIURA M, KITAGAWA  H,  et al. Rare-earth
                                                                   metal triflates in  organic synthesis[J]. Chemical Reviews, 2002,
                                                                   102(6): 2227-2302.
                                                               [9]   OTERA J. Modern carbonyl chemistry[M]. Wiley-VCH: Verlag
                                                                   GmbH, 2000: 403-490.
                                                               [10]  IMAMURA Y, NARUMI R, SHIMADA H J. Inhibition of carbonyl
                                                                   reductase activity in pig heart by alkyl phenyl ketones[J]. Journal of
                                                                   Enzyme Inhibition and Medicinal Chemistry, 2007, 22(1): 105-109.
                                                               [11]  LAN X W, WANG N X, XING  Y  L. Recent advances in radical
                                                                   difunctionalization of simple alkenes[J]. European Journal of
                                                                   Organic Chemistry, 2017, 2017(39): 5821-5851.
                          图 10   可能的反应机理                       [12]  TLAHUEXT-ACA A, GARZA-SANCHEZ R A, SCHAFER M, et al.
                    Fig.10    Possible mechanism of reaction       Visible-light-mediated synthesis of  ketones  by the  oxidative
                                                                   alkylation of styrenes[J]. Organic Letters, 2018, 20(6): 1546-1549.
                                                               [13]  OKADA K, OKAMOTO K, ODA M. A new and practical method of
            3   结论                                                 decarboxylation: Photosensitized decarboxylation of  N-acyloxy-
                                                                   phthalimides via electron-transfer mechanism[J]. Journal of the
                                                                   American Chemical Society, 1988, 110(26): 8736-8738.
                (1)设计并合成了金属有机框架 Mg-TCA,成                       [14]  ROMERO N A, NICEWICZ D A. Organic photoredox catalysis[J].
                                      2+
            功地将具有 Lewis 酸性的 Mg 和具有光催化活性的                           Chemical Reviews, 2016, 116(17): 10075-10166.
                                                               [15]  HUANG Y B,  LIANG J, WANG X S,  et al. Multifunctional
            H 3 TCA 配体引入了同一个框架。用单晶 XRD 解析                          metal-organic framework catalysts: Synergistic catalysis and tandem
                                                                   reactions[J]. Chemical Society Reviews, 2017, 46: 126-157.
            了其晶体结构。                                            [16]  DRAKE T, JI P F, LIN W B. Site isolation in metal-organic
                (2)UV-Vis 吸收光谱显示,Mg-TCA 在可见光                       frameworks enables novel transition metal catalysis[J]. Accounts of
                                                                   Chemical Research, 2018, 51(9): 2129-2138.
            区(>400 nm)具有良好吸收,电化学测试表明,                          [17]  QUAN Y  J, LAN G  X,  FAN Y  J,  et al. Metal-organic layers for
                                                                   synergistic Lewis acid and photoredox catalysis[J]. Journal of the
            Mg-TCA 的基态氧化还原电位为 0.85 V(vs. SCE),                     American Chemical Society, 2020, 142(4): 1746-1751.
            紫外-可见光谱和荧光光谱表明,Mg-TCA 的激发态                         [18]  SHELDRICK G M. Crystal structure refinement with SHELXL[J].
                                                                   Acta Crystallographica Section C-Structural Chemistry, 2015, 71: 3-8.
            氧化还原电位为–1.95 V(vs. SCE)。优异的光电性                     [19]  XIA Z H, ZHANG C L, GAO Z H, et al. Switchable decarboxylative
                                                                   Heck-type reaction and oxo-alkylation[J]. Organic Letters, 2018,
            质表明,Mg-TCA 有望成为一种高效的光催化剂。                              20(12): 3496-3499.
                                                               [20]  KAVARNOS G  J. Fundamentals of photoinduced electron
                (3)以 Mg-TCA 作为光催化剂替代传统的贵金                          transfer[M]. Wiley-VCH: Weinheim, 1993: 21-58.
   144   145   146   147   148   149   150   151   152   153   154