Page 149 - 《精细化工》2021年第8期
P. 149
第 8 期 史雨生,等: 镁-三苯胺基金属有机框架的制备及其光/Lewis 酸协同催化 ·1643·
活性酯,促使其发生裂解生成相应的烷基自由基, 属催化剂(如联吡啶铱),以 NHPI 活性酯作为烷基
生成的烷基自由基中间体对苯乙烯的烯烃双键进行 自由基前体,成功地将系列苯乙烯类底物转化成 α-
自由基加成,生成相应的苄基自由基中间体Ⅳ;该 烷基苯乙酮。Mg-TCA 展现出优异的光催化性能,
苄基自由基中间体随后与处于氧化态的 Mg-TCA •+ 其非均相特性使得该催化剂可以被重复利用至少 2
发生单电子转移,促使催化剂复原,同时生成相应 次,其催化活性没有明显降低,进一步展现出在精
的苄基碳正离子中间体Ⅴ;最后,该碳正离子中间 细化工领域的应用前景。
体被 DMSO 氧化,生成最终产物。 (4)提出了可能的反应机理。在金属有机框架
Mg-TCA 内发生了 Lewis 酸和光协同催化的过程,
Mg-TCA 的金属节点对 NHPI 活性酯的吸附作用可
以拉近活性酯和光催化中心的距离,有利于促进二
者之间光致电子转移,从而导致催化效率的提升。
这种 Lewis 酸和光协同催化的反应模式在精细化工
中间体的合成等领域也具有一定的应用前景。
参考文献:
[1] CANNALIRE R, PELLICCIA S, SANCINETO L, et al. Visible light
photocatalysis in the late-stage functionalization of pharmaceutically
relevant compounds[J]. Chemical Society Reviews, 2021, 50(2):
766-897.
图 9 Ⅱa、Mg-TCA 及 Mg-TCA 吸附Ⅱa 的 FTIR 谱图 [2] STRIETH-KALTHOFF F, JAMES M J, TEDERS M, et al. Energy
transfer catalysis mediated by visible light: Principles, applications,
Fig. 9 FTIR spectra of Ⅱa, Mg-TCA and Mg-TCA adsorbing directions[J]. Chemical Society Reviews, 2018, 47(19): 7190-7202.
Ⅱa [3] LANG X J, ZHAO J C, CHEN X D. Cooperative photoredox
catalysis[J]. Chemical Society Reviews, 2016, 45(11): 3026-3038.
[4] CHENG W M, SHANG R. Transition metal-catalyzed organic
reactions under visible light: Recent developments and future
perspectives[J]. ACS Catalysis, 2020, 10(16): 9170-9196.
[5] SKUBI K L, BLUM T R, YOON T P. Dual catalysis strategies in
photochemical synthesis[J]. Chemical Reviews, 2016, 116(17):
10035-10074.
[6] YAMAMOTO H. Lewis acids in organic synthesis[M]. Wiley-VCH:
Verlag GmbH, 2000: 59-88.
[7] HOUK K N, STROZIER R W. Lewis acid catalysis of Diels-Alder
reactions[J]. Journal of the American Chemical Society, 1973,
95(12): 4094-4096.
[8] KOBAYASHI S, SUGIURA M, KITAGAWA H, et al. Rare-earth
metal triflates in organic synthesis[J]. Chemical Reviews, 2002,
102(6): 2227-2302.
[9] OTERA J. Modern carbonyl chemistry[M]. Wiley-VCH: Verlag
GmbH, 2000: 403-490.
[10] IMAMURA Y, NARUMI R, SHIMADA H J. Inhibition of carbonyl
reductase activity in pig heart by alkyl phenyl ketones[J]. Journal of
Enzyme Inhibition and Medicinal Chemistry, 2007, 22(1): 105-109.
[11] LAN X W, WANG N X, XING Y L. Recent advances in radical
difunctionalization of simple alkenes[J]. European Journal of
Organic Chemistry, 2017, 2017(39): 5821-5851.
图 10 可能的反应机理 [12] TLAHUEXT-ACA A, GARZA-SANCHEZ R A, SCHAFER M, et al.
Fig.10 Possible mechanism of reaction Visible-light-mediated synthesis of ketones by the oxidative
alkylation of styrenes[J]. Organic Letters, 2018, 20(6): 1546-1549.
[13] OKADA K, OKAMOTO K, ODA M. A new and practical method of
3 结论 decarboxylation: Photosensitized decarboxylation of N-acyloxy-
phthalimides via electron-transfer mechanism[J]. Journal of the
American Chemical Society, 1988, 110(26): 8736-8738.
(1)设计并合成了金属有机框架 Mg-TCA,成 [14] ROMERO N A, NICEWICZ D A. Organic photoredox catalysis[J].
2+
功地将具有 Lewis 酸性的 Mg 和具有光催化活性的 Chemical Reviews, 2016, 116(17): 10075-10166.
[15] HUANG Y B, LIANG J, WANG X S, et al. Multifunctional
H 3 TCA 配体引入了同一个框架。用单晶 XRD 解析 metal-organic framework catalysts: Synergistic catalysis and tandem
reactions[J]. Chemical Society Reviews, 2017, 46: 126-157.
了其晶体结构。 [16] DRAKE T, JI P F, LIN W B. Site isolation in metal-organic
(2)UV-Vis 吸收光谱显示,Mg-TCA 在可见光 frameworks enables novel transition metal catalysis[J]. Accounts of
Chemical Research, 2018, 51(9): 2129-2138.
区(>400 nm)具有良好吸收,电化学测试表明, [17] QUAN Y J, LAN G X, FAN Y J, et al. Metal-organic layers for
synergistic Lewis acid and photoredox catalysis[J]. Journal of the
Mg-TCA 的基态氧化还原电位为 0.85 V(vs. SCE), American Chemical Society, 2020, 142(4): 1746-1751.
紫外-可见光谱和荧光光谱表明,Mg-TCA 的激发态 [18] SHELDRICK G M. Crystal structure refinement with SHELXL[J].
Acta Crystallographica Section C-Structural Chemistry, 2015, 71: 3-8.
氧化还原电位为–1.95 V(vs. SCE)。优异的光电性 [19] XIA Z H, ZHANG C L, GAO Z H, et al. Switchable decarboxylative
Heck-type reaction and oxo-alkylation[J]. Organic Letters, 2018,
质表明,Mg-TCA 有望成为一种高效的光催化剂。 20(12): 3496-3499.
[20] KAVARNOS G J. Fundamentals of photoinduced electron
(3)以 Mg-TCA 作为光催化剂替代传统的贵金 transfer[M]. Wiley-VCH: Weinheim, 1993: 21-58.