Page 152 - 《精细化工》2022年第1期
P. 152
·142· 精细化工 FINE CHEMICALS 第 39 卷
[7] REYES-BOZO L, GODOY-FAÚNDEZ A, HERRERA-URBINA R, in heterogeneous catalytic systems to promote Suzuki-Miyaura
et al. Greening Chilean copper mining operations through industrial coupling and CO bond formation reaction[J]. Journal of the Brazilian
ecology strategies[J]. Journal of Cleaner Production, 2014, 84: 671- Chemical Society, 2017, 28(11): 2064-2072.
679. [23] BURNETT M E. Understanding the impact of the coordination sphere
[8] RADETZKI M. Seven thousand years in the service of humanity-The on metal ions for the design of small molecules in therapeutics and
history of copper, the red metal[J]. Resources Policy, 2009, 34(4): diagnostics[D]. Nacogdoches, TX: Stephen F. Austin State University,
176-184. 2018.
[9] STEVES J E, STAHL S S. Copper (Ⅰ)/ABNO-catalyzed aerobic alcohol [24] DU Q, LI Y. Air-stable, Recyclable, and time-efficient
oxidation: Alleviating steric and electronic constraints of Cu/TEMPO diphenylphosphinite cellulose-supported palladium nanoparticles as a
catalyst systems[J]. Journal of the American Chemical Society, 2013, catalyst for Suzuki-Miyaura reactions[J]. Beilstein Journal of Organic
135(42): 15742-15745. Chemistry, 2011, 7(1): 378-385.
[10] MARCOUX J F, DOYE S, BUCHWALD S L. A general copper- [25] BELLER M, KRAUTER J G E, ZAPF A, et al. Carbohydrate-
catalyzed synthesis of diaryl ethers[J]. Journal of the American substituted phosphines as new ligands for two-phase catalysis-synthesis
Chemical Society, 1997, 119(43): 10539-10540. and application[J]. Catalysis Today, 1999, 48(1): 279-290.
[11] SUN G, ALEXANDROVA A N, SAUTET P. Structural rearrangements [26] LI C Q, LI D, WANG F F, et al. Synthesis and application of chromium
of subnanometer Cu oxide clusters govern catalytic oxidation[J]. complexes bearing hyperbranched PNP ligands in the ethylene
ACS Catalysis, 2020, 10(9): 5309-5317. oligomerization[J]. Applied Organometallic Chemistry, 2020, 34(11):
[12] SHAGHALEH H, XU X, WANG S. Current progress in production e5904.
of biopolymeric materials based on cellulose, cellulose nanofibers, [27] SAMMES P G, YAHIOGLU G. 1, 10-Phenanthroline: A versatile
and cellulose derivatives[J]. RSC Adv, 2018, 8(2): 825-842. ligand[J]. Chemical Society Reviews, 1994, 23(5): 327-334.
[13] QIU X, HU S. “Smart” materials based on cellulose: A review of the [28] WU C (吴春), LI J (李健). Study on the synthesis of diketones
preparations, properties, and applications[J]. Materials, 2013, 6(3): catalyzed by cellulose oxyphosphine palladium complex
738-781. compound[J]. Chemistry and Adhesion, 2000, (1): 20-21.
[14] MCNAMARA J T, MORGAN J L W, ZIMMER J. A molecular [29] FOX S C, EDGAR K J. Synthesis of regioselectively brominated
description of cellulose biosynthesis[J]. Annual Review of Biochemistry, cellulose esters and 6-cyano-6-deoxycellulose esters[J]. Cellulose,
2015, 84: 895-921. 2011, 18(5): 1305-1314.
[15] XIAO R, ZHAO H, CAI M. MCM-41-immobilized bidentate nitrogen [30] FUCHS P, ZHANG K. Efficient synthesis of organosoluble
copper (Ⅰ) complex: A highly efficient and recyclable catalyst for 6-azido-6-deoxy-2,3-O-trimethylsilyl cellulose for click reactions[J].
Buchwald N-arylation of indoles[J]. Tetrahedron, 2013, 69(26): Carbohydrate Polymers, 2019, 206: 174-178.
5444-5450. [31] GUPTA S, BARANWAL S, MUNIYAPPAN N, et al. Copper-catalyzed
[16] MALLICK S, MUKHI P, KUMARI P, et al. Synthesis, characterization N-arylation of sulfoximines with arylboronic acids under mild
and catalytic application of starch supported cuprous iodide conditions[J]. Synthesis, 2019, 51(10): 2171-2182.
nanoparticles[J]. Catalysis Letters, 2019, 149(12): 3501-3507. [32] CHAN D M T, LAM P Y S. Recent advances in copper-promoted
[17] SHOJAEIARANI J, BAJWA D S, HARTMAN K. Esterified cellulose C-heteroatom bond cross-coupling reactions with boronic acids and
nanocrystals as reinforcement in poly (lactic acid) nanocomposites[J]. derivatives[J]. Boronic Acids, 2005: 205-240.
Cellulose, 2019, 26(4): 2349-2362. [33] LEY S V, THOMAS A W. Modern synthetic methods for copper-
[18] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials mediated C (aryl)—O, C (aryl) —N, and C (aryl) —S bond
review: Structure, properties and nanocomposites[J]. Chemical Society formation[J]. Angewandte Chemie International Edition, 2003,
Reviews, 2011, 40(7): 3941-3994. 42(44): 5400-5449.
[19] KAUSHIK M, MOORES A. Nanocelluloses as versatile supports for [34] LIU X, DONG Z B. Chemoselective Chan-Lam coupling reactions
metal nanoparticles and their applications in catalysis[J]. Green between benzimidazoline-2-thiones and arylboronic acids[J]. Journal
Chemistry, 2016, 18(3): 622-637. of Organic Chemistry, 2019, 84(18): 11524-11532.
[20] MANDAL B H, RAHMAN M L, YUSOFF M M, et al. Bio-waste [35] BELETSKAYA I P, CHEPRAKOV A V. Copper in cross-coupling
corn-cob cellulose supported poly (hydroxamic acid) copper complex reactions: The post-Ullmann chemistry[J]. Coordination Chemistry
for Huisgen reaction: Waste to wealth approach[J]. Carbohydrate Reviews, 2004, 248(21/22/23/24): 2337-2364.
Polymers, 2017, 156: 175-181. [36] ZHENG N, BUCHWALD S L. Copper-catalyzed regiospecific
[21] MANDAL B H, RAHMAN M L, RAHIM M H A, et al. Highly active synthesis of N-alkylbenzimidazoles[J]. Organic Letters, 2007, 9(23):
kenaf bio-cellulose based poly (hydroxamic acid) copper catalyst for 4749-4751.
aza-Michael addition and click reactions[J]. Chemistry Select, 2016, [37] CHINCHOLE A N, DUBEY A V, KUMAR A V. Bioinspired palladium
1(11): 2750-2756. nanoparticles supported on soil-derived humic acid coated iron-oxide
[22] MARTINS G B C, SANTOS M R, RODRIGUES M V R, et al. nanoparticles as catalyst for C—C cross-coupling and reduction
Cellulose oxidation and the use of carboxyl cellulose metal complexes reactions[J]. Catalysis Letters, 2019, 149(5): 1224-1236.