Page 109 - 《精细化工》2022年第10期
P. 109
第 10 期 曹雨微,等: Mg(OH) 2 低极性晶面选择性生长控制及机理 ·2043·
hydroxide nanoflake: One-step surfactant-assisted preparation and [24] BEREZOVETS V, KYTSYA A, ZAVALIY I, et al. Kinetics and
paper-based relics protection with long-term anti-acidification and mechanism of MgH 2 hydrolysis in MgCl 2 solutions[J]. International
flame-retardancy[J]. Journal of Colloid and Interface Science, 2022, Journal of Hydrogen Energy, 2021, 46(80): 40278-40293.
607: 992-1004. [25] WU Q L (吴庆流), XIANG L (向兰), WANG T (王唐), et al. Study
[14] ZHANG Y X, ZHANG T L, KUGA S, et al. Polarities-induced on the flocculation process of MH particles[J]. Journal of Salt and
weakening of molecular interaction and formation of nanocellulose Chemical Industry (盐业与化工), 2004, 33(3): 1-3,20.
with different dimensions[J]. ACS Sustainable Chemistry & [26] WANG T, LIAN G, HUANG L P, et al. A crystal-growth boundary-
Engineering, 2020, 8(25): 9277-9290. fusion strategy to prepare high-quality MAPbI 3 films for excellent
[15] MASUDA Y. Facet controlled growth mechanism of SnO 2 (101) Vis-NIR photodetectors[J]. Nano Energy, 2019, 64: 103914.
nanosheet assembled film via cold crystallization[J]. Scientific Reports, [27] LI F, YE L L, LI Y J, et al. Investigation into the adsorption of
2021, 11(1): 11304. partially hydrolyzed polyacrylamide onto in-situ formed magnesium
[16] OHARA H, YAMAMOTO S, KUZUHARA D, et al. Layer-by-layer hydroxide particles[J]. RSC Advances, 2016, 6(37): 31092-31100.
growth control of metal-organic framework thin films assembled on [28] GOU S L (苟生莲), NAI X Y (乃学瑛), XIAO J F (肖剑飞), et al.
polymer films[J]. ACS Applied Materials&Interfaces, 2020, 12(45): Preparation and thermal decomposition of basic magnesium chloride
50784-50792. whiskers[J]. Journal of Inorganic Materials (无机材料学报), 2019,
[17] TU B, ZHOU K Q, ZHOU Q Q, et al. Waste to resource: Preparation 34(7): 781-785.
of an efficient adsorbent and its sustainable utilization in flame [29] EMADI P, RINALDI M, RAVINDRAN C. Grain refinement and
retardant polyurethane composites[J]. RSC Advances, 2021, 11(17): fading behavior of MgB 2-inoculated magnesium[J]. Metallography
9942-9954. Microstructure and Analysis, 2021, 10(3): 367-376.
[18] ZHANG D D, TAN J, DU H H, et al. Comparison study of MH, [30] WU Y M (吴易梅), SUN Y Z (孙玉柱), LU G M (路贵民), et al.
Mg-Fe LDH, and FeOOH coatings on PEO-treated Mg alloy in Preparation of hexagonal magnesium hydroxide flake by a crystallization-
anticorrosion and biocompatibility[J]. Applied Clay Science, 2022, hydrothermal method[J]. Journal of Chemical Engineering of Chinese
8(225): 106535. Universities (高校化学工程学报), 2019, 33(2): 425-434.
[19] FAN S Q(范圣茜), LUO W(骆微), ZHOU J F(周建飞), et al. [31] BEIRAU T, BISMAYER U, MIHAILOVA B, et al. Structural
Hydrothermal synthesis of nano-titanium dioxide using tannin as phenomena of metamict titanite: A synchrotron, X-ray diffraction and
template and its adsorption performances for uranium[J]. Fine vibrational spectroscopic study[J]. Phase Transitions, 2010, 83(9):
Chemicals(精细化工), 2019, 36(8): 1650-1659. 694-702.
[20] LAI W H, WANG Y X, WANG Y, et al. Morphology tuning of [32] HUR S G, PARK D H, KIM T W, et al. Evolution of the chemical
inorganic nanomaterials grown by precipitation through control of bonding nature of ferroelectric bismuth titanate upon cation
electrolytic dissociation and supersaturation[J]. Nature Chemistry, substitution[J]. Applied Physics Letters, 2004, 85(18): 4130-4132.
2019, 11(8): 695-701. [33] FAHAMI A, AL-HAZMI F S, Al-GHAMDI A A, et al. Structural
[21] ZHANG J (张婧). Study on the selective control of crystal plane of characterization of chlorine intercalated Mg-Al layered double
MH synthesized by ammonia method and adsorption performance of hydroxides: A comparative study between mechanochemistry and
congo red[D]. Beijing: Beijing University of Chemical Technology hydrothermal methods[J]. Journal of Alloys and Compounds, 2016,
(北京化工大学), 2019. 683: 100-107.
[22] WANG L (王雷). Design of crystallization processes of magnesium [34] LYU J P, QIU L Z, QU B J. Controlled growth of three morphological
hydroxide[D]. Dalian: Dalian University of Technology (大连理工大 structures of magnesium hydroxide nanoparticles by wet precipitation
学), 2008. method[J]. Journal of Crystal Growth, 2004, 267(3/4): 676-684.
[23] JIANG D M, YU Q H, HUANG C T, et al. Preparation of [35] ZOU G L, LIU R, CHEN W X, et al. Preparation and characterization
mesoporous spherical magnesium hydroxide particles via the static of lamellar-like MH nanostructures via natural oxidation of Mg metal
self-assembled method[J]. Journal of Molecular Structure, 2019, in formamide/water mixture[J]. Materials Research Bulletin, 2007,
1175: 858-864. 42(6): 1153-1158.
(上接第 2026 页) [53] WANG Y H, ZHOU Y, WANG Y J. Humidity activated ionic-
[45] ZHAO L J, WANG K, WEI W, et al. High-performance flexible conduction formaldehyde sensing of reduced graphene oxide
sensing devices based on polyaniline/MXene nanocomposites[J]. decorated nitrogen-doped MXene/titanium dioxide composite
InfoMat, 2019, 1(3): 407-416. film[J]. Sensors and Actuators B: Chemical, 2020, 323: 128695.
[46] WANG J, XU R Q, XIA Y, et al. Ti 2CT x MXene: A novel p-type [54] WU M, AN Y P, YANG R, et al. V 2CT x and Ti 3C 2T x MXenes
sensing material for visible light-enhanced room temperature methane nanosheets for gas Sensing[J]. ACS Applied Nano Materials, 2021,
detection[J]. Ceramics International, 2021, 47(24): 34437-34442. 4(6): 6257-6268.
[47] WU F, LI C J, YIN Y Y, et al. A flexible, lightweight, and wearable [55] LE V T, VASSEGHIAN Y, DOAN V D, et al. Flexible and
triboelectric nanogenerator for energy harvesting and self-powered high-sensitivity sensor based on Ti 3C 2-MoS 2 MXene composite for
sensing[J]. Advanced Materials Technologies, 2019, 4(1): 1800216. the detection of toxic gases[J]. Chemosphere, 2022, 291: 133025.
[48] XU Q K, ZONG B Y, LI Q J, et al. H 2S sensing under various [56] ZHU Z Y, LIU C C, JIANG F X, et al. Flexible and lightweight
humidity conditions with Ag nanoparticle functionalized Ti 3C 2T x Ti 3C 2T x MXene@Pd colloidal nanoclusters paper film as novel H 2
MXene field-effect transistors[J]. Journal of Hazardous Materials, sensor[J]. Journal of Hazardous Materials, 2020, 399: 123054.
2022, 424: 127492. [57] WANG B L, LAI X U J, LI H Q, et al. Multifunctional MXene/
[49] LIU M, JI J, SONG P, et al. α-Fe 2O 3 nanocubes/Ti 3C 2T x MXene chitosan-coated cotton fabric for intelligent fire protection[J]. ACS
composites for improvement of acetone sensing performance at room Applied Materials & Interfaces, 2021, 13(19): 23020-23029.
temperature[J]. Sensors and Actuators B: Chemical, 2021, 349: 130782. [58] LI Y H, CHEN Y, HE X F, et al. Lignocellulose nanofibrils/
[50] GUO W, SURYA S G, BABAR V, et al. Selective toluene detection gelatin/MXene composite aerogel with fire-warning properties for
with Mo 2CT x MXene at room temperature[J]. ACS Applied Materials enhanced electromagnetic interference shielding performance[J].
& Interfaces, 2020, 12(51): 57218-57227. Chemical Engineering Journal, 2021,431: 133907.
[51] YU X F, LI Y C, CHENG J B, et al. Monolayer Ti 2CO 2: A promising [59] JIANG C C, CHEN J Y, LAI X J, et al. Mechanically robust and
candidate for NH 3 sensor or capturer with high sensitivity and multifunctional polyimide/MXene composite aerogel for smart fire
selectivity[J]. ACS Applied Materials & Interfaces, 2015, 7(24): protection[J]. Chemical Engineering Journal, 2022, 434: 134630.
13707-13713. [60] TAN Z N, ZHAO H, SUN F R, et al. Fabrication of chitosan/MXene
[52] YANG Z J, JIANG L, WANG J, et al. Flexible resistive NO 2 gas multilayered film based on layer-by-layer assembly: Toward
sensor of three-dimensional crumpled MXene Ti 3C 2T x/ZnO spheres enhanced electromagnetic interference shielding and thermal
for room temperature application[J]. Sensors and Actuators B: management capacity[J]. Composites Part A: Applied Science and
Chemical, 2021, 326: 128828. Manufacturing, 2022, 155: 106809.