Page 151 - 《精细化工》2022年第10期
P. 151
第 10 期 陈德君,等: Pt/WO 3 -TiO 2 /ZrO 2 -Al 2 O 3 甘油加氢体系中 Al 2 O 3 的双功能作用 ·2085·
上存在较小的 Pt 纳米颗粒,对 H 2 的活化能力较好, over Li 2B 4O 7-modifified tungsten-zirconium composite oxides
而且高度分散的 ZrO 2 及 WO 3 有利于表面原位形成 supported platinum catalyst[J]. Reaction Kinetics Mechanisms &
Catalysis, 2018, 124: 683-699.
Brönsted 酸,在甘油氢解制备 1,3-PDO 的反应中表 [9] LEI N, ZHAO X C, HOU B L, et al. Effective hydrogenolysis of
现出最优性能。 glycerol to 1, 3-propanediol over metal-acid concerted Pt/WO x/Al 2O 3
catalysts[J]. ChemCatChem, 2019, 11(16): 3903-3912.
3 结论 [10] ZHOU W, LUO J, WANG Y, et al. WO x domain size, acid properties
and mechanistic aspects of glycerol hydrogenolysis over Pt/WO x/
ZrO 2[J]. Applied Catalysis B: Environmental, 2019, 242: 410-421.
(1)以 P123 为模板剂,利用 ZrOCl 2 、磷钨酸、 [11] DENG C H, LENG L, DUAN X Z, et al. Support effect on the bimetallic
AlCl 3 、钛酸四丁酯制备了一种 Al 2 O 3 掺杂的四元 structure of Ir-Re catalysts and their performances in glycerol
hydrogenolysis[J]. Journal of Molecular Catalysis A Chemical, 2015,
WO 3 -TiO 2 /ZrO 2 -Al 2 O 3 复合氧化物。 410: 81-88.
(2)少量 Al 2 O 3 的引入提高了 ZrO 2 、TiO 2 及 [12] ARUNDHATHI R, MIZUGAKI T, MITSUDOME T, et al. Highly
selective hydrogenolysis of glycerol to 1,3-propanediol over a
WO 3 的分散程度,进而在其表面锚定单斜相 WO 3
boehmite-supported platinum/tungsten catalyst[J]. ChemSusChem,
及 Pt 纳米团簇,后者在 H 2 中原位产生 Brönsted 酸 2013, 6: 1345-1347.
中心,促进 1,3-PDO 的生成。然而,WO 3 及 Pt 团簇 [13] CHENG S J, FAN Y Q, ZHANG X X, et al. Tungsten-doped
siliceous mesocellular foams-supported platinum catalyst for glycerol
之间的相互作用仍有待深入研究。
hydrogenolysis to 1,3-propanediol[J]. Applied Catalysis B:
(3)在保持 Pt、WO 3 -TiO 2 用量均不变的情况下, Environmental, 2021, 297: 120428.
催化剂中不同 ZrO 2 与 Al 2 O 3 质量比表现出一定的协 [14] LIANG Y X, SHI G J, JIN K. Promotion effect of Al 2O 3 on
Pt-WO x/SiO 2 catalysts for selective hydrogenolysis of bioglycerol to
同作用。当 m(ZrO 2 )∶m(Al 2 O 3 )=9∶1 时,Pt/WO 3 -
1, 3-propanediol in liquid phase[J]. Catalysis Letters, 2020, 150(8):
TiO 2 / ZrO 2 -Al 2 O 3 催化剂具有最佳催化活性,此时甘 2365-2376.
油的转化率可达 39.0%,1,3-PDO 的选择性则高达 [15] ZHU S H, GAO X Q, ZHU Y L, et al. SiO 2 promoted Pt/WO x/ZrO 2
catalysts for the selective hydrogenolysis of glycerol to 1,
49.0%。 3-propanediol[J]. Applied Catalysis B: Environmental, 2014, 158:
391-399.
参考文献: [16] LI C, HE B, YU L, et al. Glycerol hydrogenolysis to n-propanol over
[1] ADRIAN L, SHANTHI P, SANKAR B. Valorisation of glycerol Zr-Al composite oxide-supported Pt catalysts[J]. Chinese Journal of
through catalytic hydrogenolysis routes for sustainable production of Catalysis, 2018, 39: 1121-1128.
value-added C 3 chemicals: Current and future trends[J]. Sustainable [17] ZHANG Z L, ZHU Y H, ASAKURA H, et al. Thermally stable
Energy & Fuels, 2022, 6(3): 2887-2907. single atom Pt/m-Al 2O 3 for selective hydrogenation and CO
[2] XU W F (徐文峰), NIU P Y (牛鹏宇), GUO H Q (郭荷芹), et al. oxidation[J]. Nature Communications, 2017, 8: 16100.
Study on the performance of platinum and tungsten bifunctional [18] ZHAO S Q, LIN J J, WU P, et al. A hydrothermally stable
catalyst supported on Al 2O 3 in the hydrogenolysis of glycerol to 1, single-atom catalyst of Pt supported on high-entropy oxide/Al 2O 3:
3-propanediol[J]. Journal of Fuel Chemistry and Technology (燃料化 Structural optimization and enhanced catalytic activity[J]. ACS
学学报), 2021, 49(9): 1270-1280. Applied Materials & Interfaces, 2021, 13: 48764-48773.
[3] MARWA E D, El-SAYED S, MAYUR K, et al. Utilization of [19] XI Z W, JIA W Z, ZHU Z R. WO 3-ZrO 2-TiO 2 composite oxide
microalgal biofractions for bioethanol, higher alcohols, and biodiesel supported Pt as an efficient catalyst for continuous hydrogenolysis of
production: A review[J]. Energies, 2017, 10(12): 2110-2129. glycerol[J]. Catalysis Letters, 2021, 151(1): 124-137.
[4] SUN D L, YASUHIRO Y, SATOSHI S, et al. Glycerol [20] FAN Y Q, CHENG S J, WANG H, et al. Pt-WO x on monoclinic or
hydrogenolysis into useful C 3 chemicals[J]. Applied Catalysis B: tetrahedral ZrO 2: Crystal phase effect of zirconia on glycerol
Environmental, 2016, 193: 75-92. hydrogenolysis to 1,3-propanediol[J]. Applied Catalysis B:
[5] CHEN J H, XIA Q N, WANG Y G, et al. Progress in production of 1, Environmental, 2017, 217: 331-341.
3-propanediol from selective hydrogenolysis of glycerol[J]. Frontiers [21] FERNANDEZ S, GANDARIAS I, REQUIES J, et al. New
in Chemical Engineering, 2020, 2: 604624. approaches to the Pt/WO x/Al 2O 3 catalytic system behavior for the
[6] WU X L (吴晓霖), CHAO Z S (晁自胜), FAN J C (范金成), et al. selective glycerol hydrogenolysis to 1,3-propanediol[J]. Journal of
Research and progress on catalysts for direct hydrogenolysis of Catalysis, 2015, 323: 65-75.
glycerol to 1, 3-propanediol[J]. Advances in Material Chemistry (材 [22] ZHAO B B, LIANG Y, LIU L, et al. Facilitating Pt-WO x species
料化学前沿), 2020, 8(2): 23-34. interaction for efficient glycerol hydrogenolysis to 1,
[7] ZHU S H (朱善辉), WANG J G (王建国), FAN W B (樊卫斌), et al. 3-propanediol[J]. ChemCatChem, 2021, 13: 3695-3705.
Advances in catalytic hydrogenolysis of glycerol to fine chemicals [23] REN Y P (任云鹏), LU Y X (鲁玉祥), LOU Q (娄琦). Theoretical
[J]. Acta Physico-Chimica Sinica (物理化学学报), 2016, 32(1): study on the behavior of CO chemisorption on low-index platinum
85-97. surfaces[J]. Acta Physico-Chimica Sinica (物理化学学报), 2007,
[8] ZHU M, CHEN C L. Hydrogenolysis of glycerol to 1, 3-propanediol 23(11): 1728-1732.