Page 164 - 《精细化工》2022年第10期
P. 164

·2098·                            精细化工   FINE CHEMICALS                                 第 39 卷

            [6]   JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to   2019, 9(2): 960-966.
                 light olefins[J]. Science, 2016, 351(6277): 1065-1068.   [16]  BATTISTONI C,  PAPARAZZO E,  DUMOND Y, et al. X ray
            [7]   ZHU  Y F, PAN X L, JIAO F, et al.  Role of manganese oxide in   photoelectron spectra of the spinel systems CdCr xIn 2−xS 4[J]. Solid
                 syngas conversion  to light  olefins[J]. ACS Catalysis, 2017, 7(4):   State Communications, 1983, 46(4): 333-336.
                 2800-2804.                                    [17]  TAN L, YANG G, YONEYAMA Y, et al. Iso-butanol direct synthesis
            [8]   JIAO F, PAN X L, GONG K, et al. Shape-selective zeolites promote   from syngas over the alkali  metals  modified Cr/ZnO catalysts[J].
                 ethylene formation from syngas  via  a ketene intermediate[J].   Applied Catalysis A: General, 2015, 505: 141-149.
                 Angewandte Chemie International Edition, 2018, 57(17): 4692-4696.   [18]  MA S C, HUANG S D, LIU Z P. Dynamic coordination of cations
            [9]   LIU X, ZHOU W, YANG Y, et al. Design of efficient bifunctional   and catalytic selectivity on zinc-chromium oxide alloys during
                 catalysts for direct conversion of syngas into lower olefins  via   syngas conversion[J]. Nature Catalysis, 2019, 2(8): 671-677.
                 methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9   [19]  WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO 2
                 (20): 4708-4718.                                  solid solution catalyst for CO 2 hydrogenation to methanol[J]. Science
            [10]  SU J J, WANG D, WANG Y D, et al., Direct conversion of syngas   Advances, 2017, 3(10): 1-10.
                 into light olefins  over zirconium-doped indium (Ⅲ) oxide and   [20]  MCCLUSKEY M  D. Defects in advanced electronic materials and
                 SAPO-34 bifunctional catalysts: Design  of oxide component and   novel low dimensional structures[M/OL]. Woodhead Publishing,
                 construction of reaction network[J]. ChemCatChem, 2018, 10(7):   2018. DOI: 10.1016/B978-0-08-102053-1.00001-6.
                 1536-1541.                                    [21]  GRIMES R W, BINKS D J, LIDIARD A B. The extent of zinc oxide
            [11]  NI Y M, LIU Y, CHEN Z Y, et al. Realizing and recognizing syngas-   solution in zinc chromate spinel[J]. Philosophical Magazine A, 1995,
                 to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2019, 9   72(3): 651-668.
                 (2): 1026-1032.                               [22]  HAW J F, SONG  W G, MARCUS D M, et al. The mechanism  of
            [12]  SU J J, ZHOU H B, LIU S, et al. Syngas to light olefins conversion   methanol to hydrocarbon catalysis[J]. Accounts of Chemical Research,
                 with high  olefin/paraffin ratio  using ZnCrO x/AIPO-18 bifunctional   2003, 36(5): 317-326.
                 catalysts[J]. Nature Communications, 2019, 10(1): 1297.   [23]  WANG W, JIANG Y, HUNGER M. Mechanistic investigations of the
            [13]  VERGER L, DARGAUD O, ROUSSE G, et al. Spectroscopic properties   methanol-to-olefin  (MTO) process  on  acidic zeolite catalysts by in
                    3+
                 of Cr  in the spinel solid solution ZnAl 2–xCr xO 4[J]. Physics and   situ solid-state NMR spectroscopy[J]. Catalysis Today, 2006, 113(1):
                 Chemistry of Minerals, 2016, 43(1): 33-42.        102-114.
            [14]  PIERO G D, TRIFIRO F, VACCARI A. Non-stoicheiometric Zn-Cr   [24]  BOCCUZZI F, GARRONE E, ZECCHINA A, et al. Infrared study of
                 spinel as active phase in the catalytic synthesis  of methanol[J].   ZnO surface properties:  Ⅱ. H 2-CO interaction at room temperature[J].
                 Journal of the Chemical Society, Chemical Communications, 1984,     Journal of Catalysis, 1978, 51(2): 160-168.
                 (10): 656-658.                                [25]  RETHWISCH D G, DUMESIC J A. Adsorptive and catalytic properties
            [15]  LI N, JIAO F, PAN X, et  al. Size effects of ZnO nanoparticles in   of supported metal  oxides:  Ⅲ. Water-gas shift over supported iron
                 bifunctional catalysts for selective syngas conversion[J]. ACS Catalysis,   and zinc oxides[J]. Journal of Catalysis, 1986, 101(1): 35-42.

            (上接第 2059 页)                                           Enhanced transport and antifouling properties  of polyethersulfone
            [21]  ZHANG K, ZHANG Y, MENG X, et al. Light-triggered theranostic   membranes modified with α-amylase incorporated in chitosan-based
                 liposomes for  tumor diagnosis and  combined photodynamic  and   polymeric micelles[J]. Journal of Membrane Science, 2019, 591(1):
                 hypoxia-activated prodrug therapy[J]. Biomaterials, 2018, 185:   117605.
                 301-309.                                      [26]  LUO T T, HAN J T, ZHAO F, et al. Redox-sensitive micelles based
            [22]  LU S, NEOH K G, KANG E T, et al. Mucoadhesive polyacrylamide   on retinoic acid  modified chitosan conjugate for intracellular drug
                 nanogel as a potential hydrophobic drug carrier for intravesical   delivery and smart  drug release in cancer therapy[J].  Carbohydrate
                 bladder cancer therapy[J]. European Journal of Pharmaceutical   Polymers, 2019, 215(1): 8-19.
                 Sciences, 2015, 72: 57-68.                    [27]  CHENG G, MI  L,  CAO Z,  et al. Functionalizable and  ultrastable
            [23]  SAHATSAPAN N, ROJANARATA T, NAGAWHIRUNPAT T, et al.   zwitterionic nanogels[J]. Langmuir, 2010, 26(10): 6883- 6906.
                 6-Maleimidohexanoic acid-grafted chitosan: A new generation   [28]  RAYMOND P  B,  PHILIP G P, HELEN A S,  et al. Generation of
                 mucoadhesive polymer[J].  Carbohydrate Polymers, 2018, 202:   oxygen deficiency in cell culture using a two-enzyme  system to
                 258-264.                                          evaluate agents targeting hypoxic tumor cells[J]. Radiation Research
            [24]  WILHELM M, ZHAO C L, WANG Y, et al. Poly(styrene-ethylene   Society, 2008, 170(5): 651-660.
                 oxide) block copolymer micelle formation in water: A fluorescence   [29]  ZHOU X, WU H W, LIU Y G, et al. Oral delivery of insulin with
                 probe study[J]. Macromolecules, 1991, 24(5): 1033-1040.     intelligent glucose-responsive switch for blood glucose regulation[J].
            [25]  KOLESNYK I,  KONOVALOVA A, KHARCHENKO K,  et al.   Journal of Nanobiotechnology, 2020, 18 (1): 96-122.


            (上接第 2077 页)                                           kinetics of anthocyanins in acerola pulp: Comparison between ohmic
            [32]  SUI X N, BARY  S, ZHOU W B. Changes in the color, chemical   and conventional  heat treatment[J]. Food Chemistry, 2013, 136(2):
                 stability and antioxidant capacity of thermally treated anthocyanin   853-857.
                 aqueous solution  over storage[J]. Food Chemistry, 2016, 192:   [36]  YANG W, KAIMAINEN M, JÄRVENPÄÄ E, et al. Red beet (Beta
                 516-524.                                          vulgaris) betalains and grape (Vitis vinifera) anthocyanins as
            [33]  BI Y H, CHI X W, ZHANG R, et al. Highly efficient extraction of   colorants in white currant juice—Effect of storage on degradation
                 mulberry anthocyanins in deep eutectic solvents: Insights of   kinetics, color stability and sensory properties[J]. Food Chemistry,
                 degradation kinetics and stability evaluation[J]. Innovative Food   2021, 348: 128995.
                 Science & Emerging Technologies, 2020, 66: 102512.   [37]  FANG F, ZHANG X L, LUO H H, et al. An intracellular laccase is
            [34]  PERON D V, FRAGA S, ANTELO F. Thermal degradation kinetics   responsible for epicatechin-mediated anthocyanin degradation in
                 of anthocyanins extracted from jucara  (Euterpeedulis  Martius) and   litchi fruit pericarp[J]. Plant Physiology, 2015, 169(4): 2391-2408.
                 “Italia” grapes (Vitis vinifera L.), and the effect of heating on the   [38]  OREN-SHAMIR M. Does anthocyanin degradation play a significant
                 antioxidant capacity[J]. Food Chemistry, 2017, 232: 836-840.   role in determining pigment concentration in plants[J]. Plant Science,
            [35]  MERCALI G D, JAESCHKE D P, TESSARO I C, et al. Degradation   2009,177(4): 310-316.
   159   160   161   162   163   164   165   166   167   168   169