Page 164 - 《精细化工》2022年第10期
P. 164
·2098· 精细化工 FINE CHEMICALS 第 39 卷
[6] JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to 2019, 9(2): 960-966.
light olefins[J]. Science, 2016, 351(6277): 1065-1068. [16] BATTISTONI C, PAPARAZZO E, DUMOND Y, et al. X ray
[7] ZHU Y F, PAN X L, JIAO F, et al. Role of manganese oxide in photoelectron spectra of the spinel systems CdCr xIn 2−xS 4[J]. Solid
syngas conversion to light olefins[J]. ACS Catalysis, 2017, 7(4): State Communications, 1983, 46(4): 333-336.
2800-2804. [17] TAN L, YANG G, YONEYAMA Y, et al. Iso-butanol direct synthesis
[8] JIAO F, PAN X L, GONG K, et al. Shape-selective zeolites promote from syngas over the alkali metals modified Cr/ZnO catalysts[J].
ethylene formation from syngas via a ketene intermediate[J]. Applied Catalysis A: General, 2015, 505: 141-149.
Angewandte Chemie International Edition, 2018, 57(17): 4692-4696. [18] MA S C, HUANG S D, LIU Z P. Dynamic coordination of cations
[9] LIU X, ZHOU W, YANG Y, et al. Design of efficient bifunctional and catalytic selectivity on zinc-chromium oxide alloys during
catalysts for direct conversion of syngas into lower olefins via syngas conversion[J]. Nature Catalysis, 2019, 2(8): 671-677.
methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9 [19] WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO 2
(20): 4708-4718. solid solution catalyst for CO 2 hydrogenation to methanol[J]. Science
[10] SU J J, WANG D, WANG Y D, et al., Direct conversion of syngas Advances, 2017, 3(10): 1-10.
into light olefins over zirconium-doped indium (Ⅲ) oxide and [20] MCCLUSKEY M D. Defects in advanced electronic materials and
SAPO-34 bifunctional catalysts: Design of oxide component and novel low dimensional structures[M/OL]. Woodhead Publishing,
construction of reaction network[J]. ChemCatChem, 2018, 10(7): 2018. DOI: 10.1016/B978-0-08-102053-1.00001-6.
1536-1541. [21] GRIMES R W, BINKS D J, LIDIARD A B. The extent of zinc oxide
[11] NI Y M, LIU Y, CHEN Z Y, et al. Realizing and recognizing syngas- solution in zinc chromate spinel[J]. Philosophical Magazine A, 1995,
to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2019, 9 72(3): 651-668.
(2): 1026-1032. [22] HAW J F, SONG W G, MARCUS D M, et al. The mechanism of
[12] SU J J, ZHOU H B, LIU S, et al. Syngas to light olefins conversion methanol to hydrocarbon catalysis[J]. Accounts of Chemical Research,
with high olefin/paraffin ratio using ZnCrO x/AIPO-18 bifunctional 2003, 36(5): 317-326.
catalysts[J]. Nature Communications, 2019, 10(1): 1297. [23] WANG W, JIANG Y, HUNGER M. Mechanistic investigations of the
[13] VERGER L, DARGAUD O, ROUSSE G, et al. Spectroscopic properties methanol-to-olefin (MTO) process on acidic zeolite catalysts by in
3+
of Cr in the spinel solid solution ZnAl 2–xCr xO 4[J]. Physics and situ solid-state NMR spectroscopy[J]. Catalysis Today, 2006, 113(1):
Chemistry of Minerals, 2016, 43(1): 33-42. 102-114.
[14] PIERO G D, TRIFIRO F, VACCARI A. Non-stoicheiometric Zn-Cr [24] BOCCUZZI F, GARRONE E, ZECCHINA A, et al. Infrared study of
spinel as active phase in the catalytic synthesis of methanol[J]. ZnO surface properties: Ⅱ. H 2-CO interaction at room temperature[J].
Journal of the Chemical Society, Chemical Communications, 1984, Journal of Catalysis, 1978, 51(2): 160-168.
(10): 656-658. [25] RETHWISCH D G, DUMESIC J A. Adsorptive and catalytic properties
[15] LI N, JIAO F, PAN X, et al. Size effects of ZnO nanoparticles in of supported metal oxides: Ⅲ. Water-gas shift over supported iron
bifunctional catalysts for selective syngas conversion[J]. ACS Catalysis, and zinc oxides[J]. Journal of Catalysis, 1986, 101(1): 35-42.
(上接第 2059 页) Enhanced transport and antifouling properties of polyethersulfone
[21] ZHANG K, ZHANG Y, MENG X, et al. Light-triggered theranostic membranes modified with α-amylase incorporated in chitosan-based
liposomes for tumor diagnosis and combined photodynamic and polymeric micelles[J]. Journal of Membrane Science, 2019, 591(1):
hypoxia-activated prodrug therapy[J]. Biomaterials, 2018, 185: 117605.
301-309. [26] LUO T T, HAN J T, ZHAO F, et al. Redox-sensitive micelles based
[22] LU S, NEOH K G, KANG E T, et al. Mucoadhesive polyacrylamide on retinoic acid modified chitosan conjugate for intracellular drug
nanogel as a potential hydrophobic drug carrier for intravesical delivery and smart drug release in cancer therapy[J]. Carbohydrate
bladder cancer therapy[J]. European Journal of Pharmaceutical Polymers, 2019, 215(1): 8-19.
Sciences, 2015, 72: 57-68. [27] CHENG G, MI L, CAO Z, et al. Functionalizable and ultrastable
[23] SAHATSAPAN N, ROJANARATA T, NAGAWHIRUNPAT T, et al. zwitterionic nanogels[J]. Langmuir, 2010, 26(10): 6883- 6906.
6-Maleimidohexanoic acid-grafted chitosan: A new generation [28] RAYMOND P B, PHILIP G P, HELEN A S, et al. Generation of
mucoadhesive polymer[J]. Carbohydrate Polymers, 2018, 202: oxygen deficiency in cell culture using a two-enzyme system to
258-264. evaluate agents targeting hypoxic tumor cells[J]. Radiation Research
[24] WILHELM M, ZHAO C L, WANG Y, et al. Poly(styrene-ethylene Society, 2008, 170(5): 651-660.
oxide) block copolymer micelle formation in water: A fluorescence [29] ZHOU X, WU H W, LIU Y G, et al. Oral delivery of insulin with
probe study[J]. Macromolecules, 1991, 24(5): 1033-1040. intelligent glucose-responsive switch for blood glucose regulation[J].
[25] KOLESNYK I, KONOVALOVA A, KHARCHENKO K, et al. Journal of Nanobiotechnology, 2020, 18 (1): 96-122.
(上接第 2077 页) kinetics of anthocyanins in acerola pulp: Comparison between ohmic
[32] SUI X N, BARY S, ZHOU W B. Changes in the color, chemical and conventional heat treatment[J]. Food Chemistry, 2013, 136(2):
stability and antioxidant capacity of thermally treated anthocyanin 853-857.
aqueous solution over storage[J]. Food Chemistry, 2016, 192: [36] YANG W, KAIMAINEN M, JÄRVENPÄÄ E, et al. Red beet (Beta
516-524. vulgaris) betalains and grape (Vitis vinifera) anthocyanins as
[33] BI Y H, CHI X W, ZHANG R, et al. Highly efficient extraction of colorants in white currant juice—Effect of storage on degradation
mulberry anthocyanins in deep eutectic solvents: Insights of kinetics, color stability and sensory properties[J]. Food Chemistry,
degradation kinetics and stability evaluation[J]. Innovative Food 2021, 348: 128995.
Science & Emerging Technologies, 2020, 66: 102512. [37] FANG F, ZHANG X L, LUO H H, et al. An intracellular laccase is
[34] PERON D V, FRAGA S, ANTELO F. Thermal degradation kinetics responsible for epicatechin-mediated anthocyanin degradation in
of anthocyanins extracted from jucara (Euterpeedulis Martius) and litchi fruit pericarp[J]. Plant Physiology, 2015, 169(4): 2391-2408.
“Italia” grapes (Vitis vinifera L.), and the effect of heating on the [38] OREN-SHAMIR M. Does anthocyanin degradation play a significant
antioxidant capacity[J]. Food Chemistry, 2017, 232: 836-840. role in determining pigment concentration in plants[J]. Plant Science,
[35] MERCALI G D, JAESCHKE D P, TESSARO I C, et al. Degradation 2009,177(4): 310-316.