Page 154 - 《精细化工》2022年第11期
P. 154

·2304·                            精细化工   FINE CHEMICALS                                 第 39 卷

            3   结论                                             [12]  SONG Y R, HAN A R, PARK S G, et al. Effect of enzyme-assisted
                                                                   extraction on the physicochemical properties and bioactive potential
                                                                   of lotus leaf polysaccharides[J]. International Journal of  Biological
                (1)采用纤维素酶辅助和微波辅助提取法提取                              Macromolecules, 2020, 153: 169-179.
                                                               [13]  DUBOIS M, GILLES K A, HAMILTON J K,  et al. Colorimetric
            的琉璃苣叶多糖 BLP-1 和 BLP-2 理化性质不同,其
                                                                   method for determination of sugars and related substances[J].
            对应的相对分子质量分别为 20103 和 22652。BLP-1                       Analytical Chemistry, 1956, 28(3): 350-356.
                                                               [14]  BRADFORD M M. A rapid and sensitive method for the quantitation
            和 BLP-2 主要由 Ara、Gal、Glc、Xyl 组成,但其摩                     of microgram quantities  of  protein utilizing the principle of
            尔分数不同;其最小降解温度分别为 247 和 269 ℃                           protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-
                                                                   254.
                (2)BLP-2 对 α-葡萄糖苷酶和 α-淀粉酶的抑制                   [15]  LIU X, ZHU L C, TAN J, et al. Glucosidase inhibitory activity and
            作用强 于 BLP-1 ;低质 量浓度 的 BLP-2 ( 300~                     antioxidant activity of flavonoid  compound and triterpenoid
                                                                   compound from  Agrimonia pilosa Ledeb[J]. BMC  Complementary
            900 mg/L)对 A549、MX-1 和 HepG-2 细胞的抑制                    and Alternative Medicine, 2014, 14(1): 1-10.
            率高于 BLP-1;BLP-1 和 BLP-2 可通过增强免疫细                   [16]  AKHTAR H M S, ABDIN M, HAMED Y S, et al. Physicochemical,
                                                                   functional, structural, thermal characterization and α-amylase inhibition
            胞吞噬大分子、分泌 NO 及 IL-6 细胞因子的能力来                           of polysaccharides from chickpea (Cicer arietinum L.) hulls[J].
            刺激免疫调节活性。                                              LWT-Food Science and Technology, 2019, 113: 108265.
                                                               [17]  FELICE D L, SUN J, LIU R H. A modified methylene blue assay for
                (3)有关 BLP-1 和 BLP-2 结构表征、BLP 的体                    accurate cell  counting[J]. Journal of Functional Foods, 2009, 1(1):
                                                                   109-118.
            内降糖活性和抗癌机制有待进一步研究,开发天然                             [18]  SHI Z J, XIAO L P, DENG J, et al. Isolation and characterization of
            低价的降血糖药物,有利于琉璃苣叶资源的综合开                                 soluble polysaccharides of Dendrocalamus brandisii[J]. BioResources,
                                                                   2011, 6(4): 5151-5166.
            发利用。                                               [19]  GIAVASIS I. Bioactive fungal polysaccharides as potential functional
                 两种多糖可作为新功能食品和医药产品中的生                              ingredients in food and nutraceuticals[J]. Current Opinion in
                                                                   Biotechnology, 2014, 26: 162-173.
            物活性成分,为进一步研究两种多糖的构效关系提                             [20]  TANG S M. Astragalus  polysaccharide improves type 2 diabetes
            供了理论依据。                                                mellitus in rats by protecting islet  β cells[J]. Academic Journal of
                                                                   Second Military Medical University, 2017, 38(4): 482-487.
                                                               [21]  LIU Y T, CHEN D, YOU Y X, et al. Structural characterization and
            参考文献:                                                  antidiabetic activity of a glucopyranose-rich  heteropolysaccharide
            [1]   REN F (任飞), HAN F (韩发), SHI L N (石丽娜), et al. Supercritical   from  Catathelasma ventricosum[J]. Carbohydrate Polymers, 2016,
                 CO 2 fluid extraction of borage seed oil and its fatty acid composition   149: 399-407.
                 analysis[J]. China Oils and Fats (中国油脂), 2010, 35(8): 15-18.     [22]  CHENG S (程爽), HE F (贺斐), ZHANG  Y D (章亚东),  et al.
            [2]  LI  T  (李童). Study on the extraction process and the antioxidant   Preparation of selenium polysaccharide from  Rabdosia rubescens
                 activity of borage seed oil and its product development[D].   and analysis of its  antioxidant activity[J]. Fine Chemicals (精细化
                 Yangzhou: Yangzhou University (扬州大学), 2017.       工), 2021, 38(10): 2064-2071.
            [3]   ZHU K X, ZHANG Y J, NIE S P, et al. Physicochemical properties   [23]  XU H Y, LIU L Y, MIAO D, et al. Effect of Ganoderma applanatum
                                                                   polysaccharides on MAPK/ERK pathway affecting autophagy in
                 and in vitro antioxidant activities of polysaccharide from Artocarpus   breast cancer MCF-7 cells[J]. International Journal of Biological
                 heterophyllus Lam. pulp[J]. Carbohydrate Polymers, 2017, 155: 354-   Macromolecules, 2020, 146: 353-362.
                 361.
            [4]   HU J L, NIE S P, XIE M Y.  Antidiabetic  mechanism  of dietary   [24]  ZHANG  Y,  ZHANG Y  N, GAO W H,  et al. A  novel antitumor
                                                                   protein from the  mushroom  Pholiota nameko  induces apoptosis of
                 polysaccharides based on their gastrointestinal functions[J]. Journal   human breast adenocarcinoma MCF-7 cells  in vivo and  modulates
                 of Agricultural and Food Chemistry, 2018, 66(19): 4781-4786.   cytokine secretion in mice bearing MCF-7 xenografts[J]. International
            [5]   LI C, LI X S YOU L J, et al. Fractionation, preliminary structural   Journal of Biological Macromolecules, 2020, 164: 3171-3178.
                 characterization and bioactivities of polysaccharides from Sargassum   [25]  MA Q, JIANG J G, YUAN X H, et al. Comparative antitumor and
                 pallidum[J]. Carbohydrate Polymers, 2017, 155: 261-270.   anti-inflammatory effects of flavonoids, saponins, polysaccharides,
            [6]   LIU Y L,  YIN R  Q, LIANG S S,  et al. Effect of dietary  Lycium   essential oil, coumarin and alkaloids from Cirsium japonicum DC[J].
                 barbarum  polysaccharide on growth performance and immune   Food and Chemical Toxicology, 2019, 125: 422-429.
                 function  of broilers[J]. Journal of Applied Poultry Research, 2017,   [26]  KHAN T, DATE A, CHAWDA H, et al. Polysaccharides as potential
                 26(2): 200-208.                                   anticancer  agents—A review of their progress[J]. Carbohydrate
            [7]   CHEN B C, MCCLEMENTS D J, DECKER E A. Role of continuous   Polymers, 2019, 210: 412-428.
                 phase anionic polysaccharides on the oxidative stability of menhaden   [27]  SCHEPETKIN I A, FAULKNER  C L, NELSON-OVERTON L K,
                 oil-in-water emulsions[J]. Journal of Agricultural and Food Chemistry,   et al.    Macrophage immunomodulatory activity of  polysaccharides
                 2010, 58(6): 3779-3784.                           isolated  from  Juniperus  scopolorum[J].  International
            [8]   CHEN L, GE M  D, ZHU Y J,  et al. Structure, bioactivity and   Immunopharmacology, 2005, 5(13/14): 1783-1799.
                 applications of natural hyperbranched polysaccharides[J]. Carbohydrate   [28]  CHEN Y H,  WAN X Z, WU  D S,  et al. Characterization of the
                 Polymers, 2019, 223: 115076.                      structure and analysis of the anti-oxidant effect of  microalga
            [9]   WU G H, HU T, HUANG Z L, et al. Characterization of water and   Spirulina platensis polysaccharide on Caenorhabditis elegans mediated
                 alkali-soluble polysaccharides from Pleurotus tuber-regium sclerotia[J].   by  modulating microRNAs and gut  microbiota[J]. International
                 Carbohydrate Polymers, 2013, 96(1): 284-290.      Journal of Biological Macromolecules, 2020, 163: 2295-2305.
            [10]  SOVOVÁ H, STATEVA R P, GALUSHKO A  A. Solubility  of   [29]  LIU W J, LI W Y, SUI Y, et al. Structure characterization and anti-
                 β-carotene in supercritical CO 2 and the effect of entrainers[J]. The   leukemia activity of a novel polysaccharide from Angelica sinensis
                 Journal of Supercritical Fluids, 2001, 21(3): 195-203.   (Oliv.) diels[J]. International Journal of Biological Macromolecules,
            [11]  HU Z Y, ZHOU H L, ZHAO J L, et al. Microwave-assisted extraction,   2019, 121: 161-172.
                 characterization and immunomodulatory activity on RAW264.7 cells   [30]  USOLTSEVA R V, ANASTYUK S D, SHEVCHENKO N M, et al.
                 of polysaccharides from  Trichosanthes kirilowii Maxim seeds[J].   Polysaccharides from brown algae  Sargassum duplicatum: The
                 International Journal of Biological Macromolecules, 2020, 164:   structure and anticancer activity in vitro[J]. Carbohydrate Polymers,
                 2861-2872.                                        2017, 175: 547-556.
   149   150   151   152   153   154   155   156   157   158   159