Page 20 - 《精细化工》2022年第11期
P. 20
·2170· 精细化工 FINE CHEMICALS 第 39 卷
接触面。然而,硅活性材料的反复膨胀和收缩过程 battery anodes[J]. Journal of Materials Chemistry A, 2017, 5(10):
4809-4817.
中容易发生断裂和粉化,是表面包覆结构面临的主
[7] YAO Y, MCDOWELL M T, RYU I, et al. Interconnected silicon
要问题。因此,如何保证材料整体结构的稳定性与 hollow nanospheres for lithium-ion battery anodes with long cycle
包覆层的均匀性,以及如何改性包覆层与 Si 之间的 life[J]. Nano Letters, 2011, 11(7): 2949-2954.
[8] LAI S Y, MHLEN J P, PRESTON T J, et al. Morphology engineering
强相互作用是提升硅基材料综合性能的关键因素, of silicon nanoparticles for better performance in Li-ion battery
这对于获得具有良好耐久性的负极非常重要。 anodes[J]. Nanoscale Advances, 2020, 2: 5335-5342.
[9] YIN Y L, ELISABETTA A, WANG L N, et al. Nonpassivated silicon
硅表面功能化是硅负极材料端改性的重要手
anode surface[J]. ACS Applied Materials Interfaces, 2020, 12(23):
段,但目前其应用范围主要集中于成本较高的纳米 26593-26600.
硅表面改性,如何寻求在低成本微米硅改性过程实 [10] TANG X F, WEN G W, SONG Y. Stable silicon/3D porous N-doped
graphene composite for lithium-ion battery anodes with self-
现硅原位表面功能化改性剂的研发及应用,并且考 assembly[J]. Applied Surface Science, 2018, 436: 398-404.
虑工艺路线较简单的短流程方案,将会加快低成本 [11] WU H, CUI Y. Designing nanostructured Si anodes for high energy
lithium-ion batteries[J]. Nano Today, 2012, 7(5): 414-429.
表面功能化硅负极的商业规模生产应用。
[12] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion
构建 ASEI 膜及洞察机理有待进一步研究,但 batteries with high energy densities[J]. Nature Reviews Materials,
理想的 ASEI 膜应具备传离子、阻电子的离子导体 2016, 1(4): 16013.
[13] DU F, WANG K X, CHEN J S. Strategies to succeed in improving
特性,以及良好的机械性能,作为物理屏障来阻碍 the lithium-ion storage properties of silicon nanomaterials[J]. Journal
电极与电解质的进一步接触;此外,该膜结构应具 of Materials Chemistry A, 2016, 4(1): 32-50.
[14] JIA H P, LI X L, SONG J H, et al. Hierarchical porous silicon
有一定的均匀性以及可控的厚度。 structures with extraordinary mechanical strength as high-performance
为追求高能量密度锂离子电池,开发高能量密 lithium-ion battery anodes[J]. Nature Communications, 2020, 11(1):
1474-1483.
度动力锂电池用关键硅负极材料,加快表面改性策
[15] LIN Y F, CHEN Y F, JIANG J W, et al. Wet-chemical synthesized
略在商业硅负极的应用,未来可从以下几方面考虑提 MCMB@Si@C microspheres for high-performance lithium-ion
升硅基负极综合电化学性能:(1)将多种单一硅表 battery anodes[J]. Chemical Communications, 2018, 54: 9466-9469.
[16] ZHANG Y C, CHEN M Y, CHEN Z Y, et al. A novel Si/TiSi 2/G@C
面改性策略联合作用,稳定硅的表面结构;(2)将 composite as anode material with excellent lithium storage
表面改性策略结合结构改造(多孔、空心)或者掺 performances[J]. Materials Letters, 2021, 299: 130078.
[17] HSU Y C, HSIEH C C, LIU W R. Synthesis of double core-shell
杂等技术实现稳定硅基材料的多层次构筑结构;
carbon/silicon/graphite composite anode materials for lithium-ion
(3)将表面改性策略与电解液、黏结剂等辅材改性 batteries[J]. Surface and Coatings Technology, 2020, 387: 125528.
结合起来,以提升整体电化学性能。此外,未来的 [18] LI S F, HUANG J H, WANG J, et al. Micro-sized porous silicon@
PEDOT with high-rate capacity and stability for Li-ion battery
研发重点还必须考虑工艺端的优化,拥有制备工艺 anode[J]. Materials Letters, 2021, 293: 129712.
的先进性和环境友好性,便于规模化以及降低成本, [19] BAI Y, ZENG M, WU X, et al. Three-dimensional cage-like
Si@ZIF-67 core-shell composites for high-performance lithium
这对于当下开发商用的改性硅基负极材料也至关重
storage[J]. Applied Surface Science, 2020, 510: 145477.
要。显然,随着表面改性制造工艺以及技术的迭代 [20] JIAO X W, TIAN Y H, ZHANG X J. Hollow Si nanospheres with
更新,先进硅负极材料在商用高能量密度锂离子电 amorphous TiO 2 layer used as anode for high-performance Li-ion
battery[J]. Applied Surface Science, 2021, 9: 150682.
池中将扮演越来越重要的角色。 [21] GAO Y, QIU X T, WANG X L, et al. Facile preparation of nitrogen-
doped yolk-shell Si@void@C/CNTs microspheres as high-performance
参考文献: anode in lithium-ion batteries[J]. Materials Today Communications,
2020, 25: 101589.
[1] JUNG H, PARK M, YOON Y G,et al. Amorphous silicon anode for
[22] FAN L, LIU Y X, WANG E Y, et al. Double-buffer silicon-carbon
lithium-ion rechargeable batteries[J]. Journal of Power Sources, anode material by a dynamic self-assembly process for lithium-ion
2003, 115 (2): 346-351. batteries[J]. Electrochimica Acta, 2021, 393: 139041.
[2] WANG S (王帅), SONG G S (宋广生), WEN C E, et al. Research [23] WU Y H, HUANG J L, HOU S C, et al. Cu 3Si enhanced crystallinity
progress of initial coulomb efficiency of silicon anode in lithium-ion and dopamine derived nitrogen doping into carbon coated
batteries[J]. Functional Materials (功能材料), 2020, 51(11): 11076-
micron-sized Si/Cu 3Si as anode material in lithium-ion batteries[J].
11082.
Electrochimica Acta, 2021, 387: 138495.
[3] RYU I, CHOI J W, CUI Y, et al. Size-dependent fracture of Si
[24] YANG J C, LIU J, ZHAO C N, et al. Core-shell structured hetero
nanowire battery anodes[J]. Journal of the Mechanics and Physics of hierachical porous Si@graphene microsphere for high-performance
Solids, 2011, 59(9): 1717-1730. lithium-ion battery anodes[J]. Materials Letters, 2020, 266: 127484.
[4] LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of [25] FU L L, XU A D, SONG Y, et al. Pinecone-like silicon@carbon
silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): microspheres covered by Al 2O 3 nano-petals for lithium-ion battery
1522-1531. anode under high temperature[J]. Electrochimica Acta, 2021, 387:
[5] PELED E, PATOLSKY F, GOLODNITSKY D, et al. Tissue-like 138461.
silicon nanowires-based three-dimensional anodes for high-capacity [26] QIU Y W, ZHANG C Y, ZHANG C K, et al. CNTs-intertwined and
lithium-ion batteries[J]. Nano Letters, 2015, 15(6): 3907-3916. N-doped porous carbon wrapped silicon anode for high performance
[6] WANG T, ZHU J, CHEN Y, et al. Large-scale production of silicon lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021,
nanoparticles@graphene embedded in nanotubes as ultra-robust 877: 160240