Page 20 - 《精细化工》2022年第11期
P. 20

·2170·                            精细化工   FINE CHEMICALS                                 第 39 卷

            接触面。然而,硅活性材料的反复膨胀和收缩过程                                 battery anodes[J]. Journal of Materials Chemistry A, 2017, 5(10):
                                                                   4809-4817.
            中容易发生断裂和粉化,是表面包覆结构面临的主
                                                               [7]   YAO Y, MCDOWELL  M T, RYU  I,  et al. Interconnected silicon
            要问题。因此,如何保证材料整体结构的稳定性与                                 hollow nanospheres for lithium-ion battery anodes with long cycle
            包覆层的均匀性,以及如何改性包覆层与 Si 之间的                              life[J]. Nano Letters, 2011, 11(7): 2949-2954.
                                                               [8]   LAI S Y, MHLEN J P, PRESTON T J, et al. Morphology engineering
            强相互作用是提升硅基材料综合性能的关键因素,                                 of silicon nanoparticles for better  performance in Li-ion battery
            这对于获得具有良好耐久性的负极非常重要。                                   anodes[J]. Nanoscale Advances, 2020, 2: 5335-5342.
                                                               [9]   YIN Y L, ELISABETTA A, WANG L N, et al. Nonpassivated silicon
                 硅表面功能化是硅负极材料端改性的重要手
                                                                   anode surface[J]. ACS Applied Materials Interfaces, 2020, 12(23):
            段,但目前其应用范围主要集中于成本较高的纳米                                 26593-26600.
            硅表面改性,如何寻求在低成本微米硅改性过程实                             [10]  TANG X F, WEN G W, SONG Y. Stable silicon/3D porous N-doped
                                                                   graphene composite for lithium-ion battery anodes  with self-
            现硅原位表面功能化改性剂的研发及应用,并且考                                 assembly[J]. Applied Surface Science, 2018, 436: 398-404.
            虑工艺路线较简单的短流程方案,将会加快低成本                             [11]  WU H, CUI Y. Designing nanostructured Si anodes for high energy
                                                                   lithium-ion batteries[J]. Nano Today, 2012, 7(5): 414-429.
            表面功能化硅负极的商业规模生产应用。
                                                               [12]  CHOI J W, AURBACH D. Promise and reality of post-lithium-ion
                 构建 ASEI 膜及洞察机理有待进一步研究,但                           batteries with high energy densities[J].  Nature Reviews  Materials,
            理想的 ASEI 膜应具备传离子、阻电子的离子导体                              2016, 1(4): 16013.
                                                               [13]  DU F, WANG K X, CHEN J S. Strategies to succeed in improving
            特性,以及良好的机械性能,作为物理屏障来阻碍                                 the lithium-ion storage properties of silicon nanomaterials[J]. Journal
            电极与电解质的进一步接触;此外,该膜结构应具                                 of Materials Chemistry A, 2016, 4(1): 32-50.
                                                               [14]  JIA H P, LI X L, SONG J H,  et al. Hierarchical porous silicon
            有一定的均匀性以及可控的厚度。                                        structures with extraordinary mechanical strength as high-performance
                 为追求高能量密度锂离子电池,开发高能量密                              lithium-ion battery anodes[J]. Nature Communications, 2020, 11(1):
                                                                   1474-1483.
            度动力锂电池用关键硅负极材料,加快表面改性策
                                                               [15]  LIN Y F, CHEN Y F, JIANG J W, et al. Wet-chemical synthesized
            略在商业硅负极的应用,未来可从以下几方面考虑提                                MCMB@Si@C  microspheres for high-performance lithium-ion
            升硅基负极综合电化学性能:(1)将多种单一硅表                                battery anodes[J]. Chemical Communications, 2018, 54: 9466-9469.
                                                               [16]  ZHANG Y C, CHEN M Y, CHEN Z Y, et al. A novel Si/TiSi 2/G@C
            面改性策略联合作用,稳定硅的表面结构;(2)将                                composite as  anode  material with excellent lithium storage
            表面改性策略结合结构改造(多孔、空心)或者掺                                 performances[J]. Materials Letters, 2021, 299: 130078.
                                                               [17]  HSU Y C, HSIEH C  C,  LIU W  R. Synthesis of double  core-shell
            杂等技术实现稳定硅基材料的多层次构筑结构;
                                                                   carbon/silicon/graphite composite anode materials for lithium-ion
            (3)将表面改性策略与电解液、黏结剂等辅材改性                                batteries[J]. Surface and Coatings Technology, 2020, 387: 125528.
            结合起来,以提升整体电化学性能。此外,未来的                             [18]  LI S F, HUANG J H, WANG J, et al. Micro-sized porous silicon@
                                                                   PEDOT with high-rate capacity and stability for Li-ion battery
            研发重点还必须考虑工艺端的优化,拥有制备工艺                                 anode[J]. Materials Letters, 2021, 293: 129712.
            的先进性和环境友好性,便于规模化以及降低成本,                            [19]  BAI Y, ZENG  M, WU X,  et al. Three-dimensional  cage-like
                                                                   Si@ZIF-67  core-shell composites for high-performance lithium
            这对于当下开发商用的改性硅基负极材料也至关重
                                                                   storage[J]. Applied Surface Science, 2020, 510: 145477.
            要。显然,随着表面改性制造工艺以及技术的迭代                             [20]  JIAO X W, TIAN Y H, ZHANG X J. Hollow Si nanospheres with
            更新,先进硅负极材料在商用高能量密度锂离子电                                 amorphous TiO 2 layer used as  anode for high-performance  Li-ion
                                                                   battery[J]. Applied Surface Science, 2021, 9: 150682.
            池中将扮演越来越重要的角色。                                     [21]  GAO Y, QIU X T, WANG X L, et al. Facile preparation of nitrogen-
                                                                   doped yolk-shell Si@void@C/CNTs microspheres as high-performance
            参考文献:                                                  anode in lithium-ion batteries[J]. Materials Today Communications,
                                                                   2020, 25: 101589.
            [1]   JUNG H, PARK M, YOON Y G,et al. Amorphous silicon anode for
                                                               [22]  FAN L, LIU Y X, WANG E Y, et al. Double-buffer silicon-carbon
                 lithium-ion rechargeable batteries[J]. Journal  of  Power Sources,   anode material by  a dynamic self-assembly process for lithium-ion
                 2003, 115 (2): 346-351.                           batteries[J]. Electrochimica Acta, 2021, 393: 139041.
            [2]   WANG S (王帅), SONG G S (宋广生), WEN C E, et al. Research   [23]  WU Y H, HUANG J L, HOU S C, et al. Cu 3Si enhanced crystallinity
                 progress of initial coulomb efficiency of silicon anode in lithium-ion   and dopamine derived nitrogen doping into carbon coated
                 batteries[J]. Functional Materials (功能材料), 2020, 51(11): 11076-
                                                                   micron-sized Si/Cu 3Si as anode  material in lithium-ion batteries[J].
                 11082.
                                                                   Electrochimica Acta, 2021, 387: 138495.
            [3]   RYU I, CHOI J  W, CUI Y,  et al.  Size-dependent fracture of Si
                                                               [24]  YANG J C,  LIU J, ZHAO C  N, et al. Core-shell structured hetero
                 nanowire battery anodes[J]. Journal of the Mechanics and Physics of   hierachical porous  Si@graphene microsphere for  high-performance
                 Solids, 2011, 59(9): 1717-1730.                   lithium-ion battery anodes[J]. Materials Letters, 2020, 266: 127484.
            [4]   LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of   [25]  FU L L, XU  A D, SONG  Y,  et al. Pinecone-like silicon@carbon
                 silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):   microspheres covered by Al 2O 3 nano-petals for lithium-ion battery
                 1522-1531.                                        anode under high temperature[J]. Electrochimica Acta, 2021, 387:
            [5]   PELED  E, PATOLSKY F, GOLODNITSKY D,  et al. Tissue-like   138461.
                 silicon nanowires-based three-dimensional anodes for high-capacity   [26]  QIU Y W, ZHANG C Y, ZHANG C K, et al. CNTs-intertwined and
                 lithium-ion batteries[J]. Nano Letters, 2015, 15(6): 3907-3916.     N-doped porous carbon wrapped silicon anode for high performance
            [6]   WANG T, ZHU J, CHEN Y, et al. Large-scale production of silicon   lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021,
                 nanoparticles@graphene embedded in nanotubes as ultra-robust   877: 160240
   15   16   17   18   19   20   21   22   23   24   25