Page 21 - 《精细化工》2022年第11期
P. 21
第 11 期 王 帅,等: 锂离子电池硅负极表面改性的研究进展 ·2171·
[27] MEI X L, LIU Y F, FU J J, et al. Waste-glass-derived silicon/CNTs functionalization and polymerization on anode characteristics of
composite with strong Si—C covalent bonding for advanced anode plasma-synthesized silicon nanocrystal active materials for lithium-ion
materials in lithium-ion batteries[J]. Applied Surface Science, 2021, battery anode[J]. Journal of Industrial and Engineering Chemistry,
563: 150280. 2019, 80: 479-489.
[28] DONG H, FU X L, WANG J, et al. In-situ construction of porous [46] ZHANG H B, LIU K, LIU Y Y, et al. Observably improving initial
Si@C composites with LiCl template to provide silicon anode coulombic efficiency of C/SiO x anode using —C—O—PO 3Li 2
expansion buffer[J]. Carbon, 2021, 173: 687-695. groups in lithium-ion batteries[J]. Journal of Power Sources, 2020, 447:
[29] ZHU H Z, MHAS A, LIANG L, et al. Atomic layer deposited 227400.
aluminum oxynitride coating for high-performance Si anode in [47] ZHAO J, LU Z D, WANG H T, et al. Artificial solid electrolyte
lithium-ion batteries[J]. Applied Surface Science, 2022, 578: 151982. interphase-protected Li xSi nanoparticles: An efficient and stable
[30] ZHANG J, ZUO S L, WANG Y Q, et al. Scalable synthesis of prelithiation reagent for lithium-ion batteries[J]. Journal of the
interconnected hollow Si/C nanospheres enabled by carbon dioxide American Chemical Society, 2015, 137(26): 8372.
in magnesiothermic reduction for high-performance lithium energy [48] NIMROD H, GUY D, FERNANDO P. Breathing parylene-based
storage[J]. Journal of Power Sources, 2021, 495: 229803. nanothin artificial SEI for highly-stable long life three-dimensional
[31] YANG Z W, QIU L, ZHANG M K, et al. Carbon dioxide solid-phase silicon lithium-ion batteries[J]. Chemical Engineering Journal, 2022,
embedding reaction of silicon-carbon nanoporous composites for 429: 132077.
lithium-ion batteries[J]. Chemical Engineering, 2021, 423: 130127. [49] FANG J B, CHANG S Z, REN Q, et al. Tailoring stress and
[32] XIONG H T, ZOU H Y, LIU H, et al. Surface functionalization of a ion-transport kinetics via a molecular layer deposition-induced
γ-graphyne-like carbon material via click chemistry[J]. Chemistry An artificial solid electrolyte interphase for durable silicon composite
Asian Journal, 2021, 16: 922-925. anodes[J]. ACS Applied Materials Interfaces, 2021, 13(27):
[33] ASMAT S, ANWER A H, HUSAIN Q. Immobilization of lipase onto 32520-32530.
novel constructed polydopamine grafted multiwalled carbon nanotube [50] YANG G, SARAH F, TAO R M, et al. Robust solid electrolyte
impregnated with magnetic cobalt and its application in synthesis of interphase (SEI) formation on Si anodes using glyme-based
fruit flavours[J]. International Journal of Biological Macromolecules, electrolytes[J]. ACS Energy Letters, 2021, 6(5): 1684-1693.
2019, 140(1): 484-495. [51] LI J C, DUDNEY N J, NANDA J, et al. Artificial solid electrolyte
[34] CAO Z, ZACATE S B, SUN X, et al. Tuning gold nanoparticles with interphase to address the electrochemical degradation of silicon
chelating ligands for highly efficient electrocatalytic CO 2 reduction electrodes[J]. ACS Applied Materials Interfaces, 2014, 6(13):
[J]. Angewandte Chemie International Edition, 2018, 57(39): 12675- 10083-10088.
12679. [52] WANG H, MIAO M R, LI H, et al. In situ formed artificial solid
[35] JI J, SHI L M, WU F, et al. Syntheses, structures, and immobilization electrolyte interphase for boosting the cycle stability of Si-based
of ruthenium (Ⅱ) complexes with alkoxysilane groups functionalized anodes for Li-ion batteries[J]. ACS Applied Materials Interfaces,
N,N′-diamine and phosphine ligands[J]. Journal of Coordination 2021, 13(19): 22505-22513.
Chemistry, 2020, 73(8): 1314-1324. [53] HARUTA M, KIJIMA, OGURA N, et al. In-situ AFM imaging of
[36] JIANG S, HU B, SAHORE R, et al. Surface-functionalized silicon solid electrolyte interphase on silicon negative electrodes with an
nanoparticles as anode material for lithium-ion battery[J]. ACS artificial surface layer[J]. Nanoscale, 2018, 10: 17257-17264.
Applied Materials Interfaces, 2018, 10(51): 44924-44931. [54] AURBACH D. Review of selected electrode-solution interactions
[37] JIANG S S, YANG Z Z, LIU Y Z, et al. Engineering the Si anode which determine the performance of Li and Li-ion batteries[J].
interface via particle surface modification: Embedded organic Journal of Power Sources, 2000, 89: 206-218.
carbonates lead to enhanced performance[J]. ACS Applied Energy [55] PELED E, GOLODNITSKAY D, ARDEL G. Advanced model for
Materials, 2021, 4(8): 8193-8200. solid electrolyte interphase electrodes in liquid and polymer
[38] LIN Y F, JIANG J W, ZHANG Y G, et al. The promoting effect of electrolytes[J]. Journal of Electrochemcial Society, 1997, 144:
Si—OH to the decomposition of electrolyte in lithium-ion batteries[J]. L208-L210.
Chemistry of Materials, 2020, 32(15): 6365-6373. [56] PELED E, MENKIN S. Review-SEI: Past, present and future[J].
[39] LIN Y F, LIN H Q, JIANG J W, et al. Structure and conductivity Journal of Electrochemcial Society, 2017, 164: A1703-A1719.
enhanced treble-shelled porous silicon as an anode for high- [57] LU Y Y, TU Z Y, ARCHER L A. Stable lithium electrodeposition in
performance lithium-ion batteries[J]. RSC Advances, 2019, 9(61): liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014,
35392-35400. 13(10): 961-969.
[40] JANG J, KIM H, LIM H, et al. Surfactant-based selective assembly [58] OKUNO Y, USHIROGATA K, SODEYAMA K, et al. Decomposition
approach for Si-embedded silicon oxycarbide composite materials in of the fluoroethylene carbonate additive and the glue effect of lithium
lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 401: fluoride products for the solid electrolyte interphase: An ab initio
126091. study[J]. Physical Chemistry Chemical Physics, 2016, 18: 8643-8653.
[41] GUO J G, ZHAI W, SUN Q, et al. Facilely tunable core-shell [59] YONG Y, WANG Z X, ZHOU R, et al. Effects of lithium fluoride
Si@SiO x nanostructures prepared in aqueous solution for lithium-ion coating on the performance of nano-silicon as anode material for
battery anode[J]. Electrochimica Acta, 2020, 342: 136068. lithium-ion batteries[J]. Materials Letters, 2016, 184: 65-68.
[42] MEI S X, GUO S G, XIANG B, et al. Enhanced ion conductivity and [60] CORTE D D, GOUGET-LAEMMEL A C, LAHLIL K, et al.
electrode-electrolyte interphase stability of porous Si anodes enabled Molecular grafting on silicon anodes: Artificial solid-electrolyte
by silicon nitride nanocoating for high-performance Li-ion interphase and surface stabilization[J]. Electrochimica Acta, 2016,
batteries[J]. Journal of Energy Chemistry, 2022, 69: 616-625. 201: 70-77.
[43] WANG Q S, MENG T, LI Y H, et al. Consecutive chemical bonds [61] LI Y Z, LU J M, WANG Z Y, et al. Suppressing continuous volume
reconstructing surface structure of silicon anode for high-performance expansion of Si nanoparticles by an artificial solid electrolyte
lithium-ion battery[J]. Energy Storage Materials, 2021, 39: 354-364. interphase for high-performance lithium-ion batteries[J]. ACS
[44] KIM D, ZUIDEMA J M, KANG J, et al. Facile surface modification Sustainable Chemistry Engineering, 2021, 9(24): 8059-8068.
of hydroxylated silicon nanostructures using heterocyclic silanes[J]. [62] YU C H, LIN X Q, CHEN X, et al. Suppressing the side reaction by
Journal of the American Chemical Society, 2016: 15106-15109. a selective blocking layer to enhance the performance of Si-based
[45] LEE D S, LEE D M, YOO S W, et al. Effects of surface anodes[J]. Nano Letters, 2020, 20(7): 5176-5184.