Page 21 - 《精细化工》2022年第11期
P. 21

第 11 期                      王   帅,等:  锂离子电池硅负极表面改性的研究进展                                 ·2171·


            [27]  MEI X L, LIU Y F, FU J J, et al. Waste-glass-derived silicon/CNTs   functionalization and polymerization on anode characteristics of
                 composite with strong Si—C covalent bonding for advanced anode   plasma-synthesized silicon nanocrystal active materials for lithium-ion
                 materials in lithium-ion batteries[J]. Applied Surface Science, 2021,   battery anode[J]. Journal of Industrial and Engineering  Chemistry,
                 563: 150280.                                      2019, 80: 479-489.
            [28]  DONG H, FU X  L, WANG J, et al. In-situ construction of porous   [46]  ZHANG H B, LIU K, LIU Y Y, et al. Observably improving initial
                 Si@C composites  with LiCl template to provide silicon anode   coulombic efficiency of C/SiO x anode using  —C—O—PO 3Li 2
                 expansion buffer[J]. Carbon, 2021, 173: 687-695.     groups in lithium-ion batteries[J]. Journal of Power Sources, 2020, 447:
            [29]  ZHU H  Z, MHAS A, LIANG L,  et al. Atomic layer  deposited   227400.
                 aluminum oxynitride coating  for high-performance Si anode in   [47]  ZHAO J,  LU  Z D, WANG  H T,  et al. Artificial solid electrolyte
                 lithium-ion batteries[J]. Applied Surface Science, 2022, 578: 151982.     interphase-protected Li xSi nanoparticles: An efficient and stable
            [30]  ZHANG J, ZUO  S L,  WANG Y Q,  et al. Scalable synthesis of   prelithiation reagent for lithium-ion batteries[J]. Journal of the
                 interconnected hollow Si/C nanospheres enabled by carbon dioxide   American Chemical Society, 2015, 137(26): 8372.
                 in magnesiothermic reduction for high-performance lithium  energy   [48]  NIMROD H, GUY D, FERNANDO P. Breathing parylene-based
                 storage[J]. Journal of Power Sources, 2021, 495: 229803.     nanothin artificial SEI for highly-stable long life three-dimensional
            [31]  YANG Z W, QIU L, ZHANG M K, et al. Carbon dioxide solid-phase   silicon lithium-ion batteries[J]. Chemical Engineering Journal, 2022,
                 embedding reaction of  silicon-carbon nanoporous composites  for   429: 132077.
                 lithium-ion batteries[J]. Chemical Engineering, 2021, 423: 130127.     [49]  FANG J B,  CHANG S Z, REN Q,  et al. Tailoring stress and
            [32]  XIONG H T, ZOU H Y, LIU H, et al. Surface functionalization of a   ion-transport kinetics  via a molecular layer deposition-induced
                 γ-graphyne-like carbon material via click chemistry[J]. Chemistry An   artificial solid electrolyte interphase for durable silicon composite
                 Asian Journal, 2021, 16: 922-925.                 anodes[J]. ACS  Applied Materials Interfaces, 2021, 13(27):
            [33]  ASMAT S, ANWER A H, HUSAIN Q. Immobilization of lipase onto   32520-32530.
                 novel constructed polydopamine grafted multiwalled carbon nanotube   [50]  YANG  G, SARAH F, TAO R M,  et al. Robust solid  electrolyte
                 impregnated with magnetic cobalt and its application in synthesis of   interphase (SEI) formation on Si anodes using glyme-based
                 fruit flavours[J]. International Journal of Biological Macromolecules,   electrolytes[J]. ACS Energy Letters, 2021, 6(5): 1684-1693.
                 2019, 140(1): 484-495.                        [51]  LI J C, DUDNEY N J, NANDA J, et al. Artificial solid electrolyte
            [34]  CAO Z, ZACATE S B, SUN X, et al. Tuning gold nanoparticles with   interphase to address the electrochemical degradation  of silicon
                 chelating ligands for highly efficient electrocatalytic CO 2 reduction   electrodes[J]. ACS Applied Materials Interfaces, 2014, 6(13):
                 [J]. Angewandte Chemie International Edition, 2018, 57(39): 12675-   10083-10088.
                 12679.                                        [52]  WANG H,  MIAO  M R, LI H,  et al.  In situ  formed artificial solid
            [35]  JI J, SHI L M, WU F, et al. Syntheses, structures, and immobilization   electrolyte interphase for boosting the  cycle stability of Si-based
                 of ruthenium (Ⅱ) complexes with alkoxysilane groups functionalized   anodes for Li-ion  batteries[J]. ACS Applied Materials  Interfaces,
                 N,N′-diamine and phosphine ligands[J]. Journal of Coordination   2021, 13(19): 22505-22513.
                 Chemistry, 2020, 73(8): 1314-1324.            [53]  HARUTA M, KIJIMA, OGURA N,  et al.  In-situ AFM imaging of
            [36]  JIANG S, HU B, SAHORE R, et al. Surface-functionalized silicon   solid electrolyte interphase on silicon negative electrodes with an
                 nanoparticles as anode  material for lithium-ion battery[J]. ACS   artificial surface layer[J]. Nanoscale, 2018, 10: 17257-17264.
                 Applied Materials Interfaces, 2018, 10(51): 44924-44931.     [54]  AURBACH D.  Review of selected electrode-solution interactions
            [37]  JIANG S S, YANG Z Z, LIU Y Z, et al. Engineering the Si anode   which determine the performance of Li  and Li-ion batteries[J].
                 interface  via particle surface  modification: Embedded organic   Journal of Power Sources, 2000, 89: 206-218.
                 carbonates lead to  enhanced performance[J]. ACS Applied Energy   [55]  PELED E, GOLODNITSKAY D, ARDEL G.  Advanced model for
                 Materials, 2021, 4(8): 8193-8200.                 solid electrolyte interphase electrodes in liquid and polymer
            [38]  LIN Y F, JIANG J W, ZHANG Y G, et al. The promoting effect of     electrolytes[J]. Journal of Electrochemcial Society, 1997, 144:
                 Si—OH to the  decomposition of  electrolyte  in lithium-ion  batteries[J].   L208-L210.
                 Chemistry of Materials, 2020, 32(15): 6365-6373.     [56]  PELED E, MENKIN S. Review-SEI: Past, present and future[J].
            [39]  LIN Y F,  LIN H  Q, JIANG J  W,  et al. Structure and conductivity   Journal of Electrochemcial Society, 2017, 164: A1703-A1719.
                 enhanced treble-shelled porous silicon as an  anode for high-   [57]  LU Y Y, TU Z Y, ARCHER L A. Stable lithium electrodeposition in
                 performance lithium-ion batteries[J].  RSC Advances, 2019, 9(61):   liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014,
                 35392-35400.                                      13(10): 961-969.
            [40]  JANG J, KIM H, LIM H, et al. Surfactant-based selective assembly   [58]  OKUNO Y, USHIROGATA K, SODEYAMA K, et al. Decomposition
                 approach for Si-embedded silicon oxycarbide composite materials in   of the fluoroethylene carbonate additive and the glue effect of lithium
                 lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 401:   fluoride products  for the solid electrolyte interphase:  An ab initio
                 126091.                                           study[J]. Physical Chemistry Chemical Physics, 2016, 18: 8643-8653.
            [41]  GUO J G, ZHAI  W, SUN Q,  et al. Facilely tunable core-shell   [59]  YONG Y, WANG Z X, ZHOU R, et al. Effects of lithium fluoride
                 Si@SiO x nanostructures prepared in aqueous solution for lithium-ion   coating on the performance of nano-silicon as anode material for
                 battery anode[J]. Electrochimica Acta, 2020, 342: 136068.     lithium-ion batteries[J]. Materials Letters, 2016, 184: 65-68.
            [42]  MEI S X, GUO S G, XIANG B, et al. Enhanced ion conductivity and   [60]  CORTE D  D,  GOUGET-LAEMMEL  A C, LAHLIL K,  et al.
                 electrode-electrolyte interphase stability of porous Si anodes enabled   Molecular grafting on silicon anodes: Artificial solid-electrolyte
                 by silicon  nitride nanocoating for high-performance Li-ion   interphase and surface stabilization[J]. Electrochimica Acta, 2016,
                 batteries[J]. Journal of Energy Chemistry, 2022, 69: 616-625.     201: 70-77.
            [43]  WANG Q S, MENG T, LI Y H, et al. Consecutive chemical bonds   [61]  LI Y Z, LU J M, WANG Z Y, et al. Suppressing continuous volume
                 reconstructing surface structure of silicon anode for high-performance   expansion  of  Si  nanoparticles by an artificial solid  electrolyte
                 lithium-ion battery[J]. Energy Storage Materials, 2021, 39: 354-364.     interphase for high-performance lithium-ion batteries[J]. ACS
            [44]  KIM D, ZUIDEMA J M, KANG J, et al. Facile surface modification   Sustainable Chemistry Engineering, 2021, 9(24): 8059-8068.
                 of hydroxylated silicon nanostructures using heterocyclic silanes[J].   [62]  YU C H, LIN X Q, CHEN X, et al. Suppressing the side reaction by
                 Journal of the American Chemical Society, 2016: 15106-15109.     a selective blocking layer to enhance the performance of Si-based
            [45]  LEE D S, LEE  D M, YOO S W,  et al. Effects of surface   anodes[J]. Nano Letters, 2020, 20(7): 5176-5184.
   16   17   18   19   20   21   22   23   24   25   26