Page 221 - 《精细化工》2022年第3期
P. 221

第 3 期          张弘弛,等: FgaPT2 酶催化合成 C-4 异戊烯基化吲哚二酮哌嗪和定向诱变增强收率                              ·643·


            瘤、抗细菌、抗真菌和抗氧化活性。其中,环-L-4-                              an  Aspergillus terreus  prenyltransferase[J]. Applied Microbiology
                                                                   and Biotechnology, 2015, 99: 1719-1730.
            二甲基烯丙基-色氨酸-L-色氨酸表现出最高的综合                           [16]  LIU R, ZHANG H C, WU W Q, et al. C7-prenylation of tryptophan-
            生物学活性。基于分子模型和关键残基,确定                                   containing cyclic dipeptides by 7-dimethylallyl tryptophan synthase
                                                                   significantly increases the anticancer and antimicrobial activities[J].
            Arg-244 为 FgaPT2 的异戊烯基化活性的饱和诱变位                        Molecules, 2020, 25: 3676.
            点。诱变结果显示,52.6%的 FgaPT2_R244X 突变体                   [17]  ZHOU  K, ZHAO  W, LIU X Q,  et al. Saturation mutagenesis on
                                                                   Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 results
            可以增强对环-L-色氨酸-L-色氨酸的催化能力,而                              in mutants with strongly increased C3-prenylating activity[J]. Applied
            21.1%的突变体具有与 FgaPT2 相似的催化能力。环-                         Microbiology and Biotechnology, 2016, 100: 9943-9953.
                                                               [18]  FAN A L,  ZOCHER G, STEC  E,  et al. Site-directed mutagenesis
            L-色氨酸-L-色氨酸和突变的氨基酸之间的动力学                               switching a dimethylallyl tryptophan synthase to a specific tyrosine
            参数分析也支持这一结论。这意味着所获得的具有                                 C3-prenylating enzyme[J]. Journal of Biological Chemistry, 2015,
                                                                   290: 1364-1373.
            较高催化效率的突变体可以作为生产 C-4 异戊烯基                          [19]  FAN A L, LI S  M. Saturation mutagenesis on Arg-244 of the
            化吲哚二酮哌嗪的有效催化剂。                                         tryptophan C4-prenyltransferase FgaPT2 leads to enhanced catalytic
                                                                   ability and different preferences for tryptophan-containing cyclic
            参考文献:                                                  dipeptides[J]. Applied Microbiology and Biotechnology, 2016, 100:
                                                                   5389-5399.
            [1]   LI S M. Prenylated indole derivatives from fungi: Structure diversity,   [20]  LIU R (刘瑞),  ZHANG H C  (张弘弛), LI  H (李慧),  et al. C-7
                 biological activities, biosynthesis and chemoenzymatic synthesis[J].   prenylation of indole diketopiperazine alkaloids by  7-dimethylallyl
                 Natural Product Reports, 2010, 27: 57-78.         tryptophan synthase[J]. Acta Agriculturae Boreali-occidentalis Sinica
            [2]   RUIZ-SANCHIS P, SAVINA S A, ALBERICIO F, et al. Structure,   (西北农业学报), 2021, 30(3): 413-421.
                 bioactivity  and  synthesis  of  natural  products  with  [21]  WOODSIDE A B, HUANG  Z, POULTER C D. Trisammonium
                 hexahydropyrrolo[2,3-b] indole[J]. Chemistry, 2011, 17: 1388-1408.   geranyl diphosphate[J]. Organic Syntheses, 1988, 66: 211-215.
            [3]   HAYNES S W, GAO X, TANG Y, et al. Complexity generation in   [22]  JEEDIGUNTA S, KRENISKY J M, KERR R G. Diketopiperazines
                 fungal peptidyl alkaloid biosynthesis: A two-enzyme pathway to the   as advanced intermediates in the biosynthesis of ecteinascidins[J].
                 hexacyclic MDR export pump inhibitor ardeemin[J]. ACS Chemical   Tetrahedron, 2000, 56: 3303-3307.
                 Biology, 2013, 8: 741-748.                    [23]  MAI P, ZOCHER G, STEHLE T,  et al. Structure-based protein
            [4]   HAARMANN T, ROLKE  Y, GIESBERT  S,  et al. Ergot: From   engineering enables prenyl  donor switching of a fungal aromatic
                 witchcraft to biotechnology[J]. Molecular Plant Pathology, 2009, 10:   prenyltransferase[J]. Organic and Biomolecular Chemistry, 2018, 16:
                 563-577.                                          7461-7469.
            [5]   JAIN H D, ZHANG C C, ZHOU S, et al. Synthesis and structure-   [24]  LIU J Y, PANG Y, CHEN J, et al. Hyperbranched polydiselenide as a
                 activity relationship studies on tryprostatin A, a potent inhibitor of   selfassembling broad spectrum anticancer agent[J]. Biomaterials,
                 breast cancer resistance protein[J]. Bioorganic and Medicinal Chemistry,   2012, 33: 7765-7774.
                 2008, 16: 4626-4651.                          [25]  National Committee for Clinical Laboratory Standards  (NCCLS).
            [6]   ZHAO L, MAY J  P, HUANG J,  et al. Stereoselective synthesis of   Performance standards for antimicrobial susceptibility testing;
                 brevianamide E[J]. Organic Letters, 2012, 14: 90-93.   Document M100-S12[S]. NCCLS: Wayne, PA, USA, 2002.
            [7]   DE BRUIJN W J C, LEVISSON M, BEEKWILDER J, et al. Plant   [26]  Clinical and Laboratory Standards Institute (CLSI). Reference method
                 aromatic prenyltransferases: Tools  for microbial cell factories[J].   for  brothdilution antifungal susceptibility testing of filamentous
                 Trends in Biotechnology, 2020, 38: 917-934.       fungi; Documentis M38-A2[S]. CLSI: Wayne, PA, USA, 2008.
            [8]   MORI  T, ZHANG L H, AWAKAWA  T,  et al. Manipulation of   [27]  Clinical and Laboratory Standards Institute (CLSI). Reference
                 prenylation reactions by structure-based engineering  of bacterial   method for  brothdilution antifungal susceptibility testing  of yeasts;
                 indolactam prenyltransferases[J]. Nature Communications, 2016, 7:   Document M27-S4[S]. CLSI: Wayne, PA, USA, 2012.
                 10849.                                        [28]  LIU Z Q.  Chemical  methods to evaluate  antioxidant ability[J].
            [9]   NAGIA M,  GAID M, BIEDERMANN E,  et al. Sequential   Chemical Reviews, 2010, 110: 5675-5691.
                 regiospecific gem-diprenylation of tetrahydroxyxanthone by   [29]  WANG Z, SUN H Y, YAO X J, et al. Comprehensive evaluation of
                 prenyltransferases from  Hypericum sp.[J]. New Phytologist, 2019,   ten docking programs on a diverse set of protein-ligand complexes:
                 222: 318-334.                                     The prediction accuracy of sampling power and scoring power[J].
            [10]  MUNDT K, LI S M. CdpC2PT, a reverse prenyltransferase from   Physical Chemistry Chemical Physics, 2016, 18: 12964-12975.
                 Neosartorya fischeri with distinct substrate preference from known   [30]  RAASAKKA A,  MYLLYKOSKI  M, LAULUMAA S, et al.
                 C2-prenyltransferases[J]. Microbiology, 2013, 159: 2169-2179.   Determinants of ligand binding and catalytic activity in the myelin
            [11]  YIN W B, XIE X  L, MATUSCHEKA M,  et al. Reconstruction of   enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase[J]. Scientific
                 pyrrolo[2,3-b] indoles carrying an  α-configured reverse C3-   Reports, 2015, 5: 16520.
                 dimethylallyl moiety by using recombinant enzymes[J]. Organic and   [31]  WOLLINSKY B, LUDWIG L, HAMACHER A, et al. Prenylation at
                 Biomolecular Chemistry, 2010, 8: 1133-1141.       the indole ring  leads to a significant increase of cytotoxicity of
            [12]  UNSÖLD I A,  LI S M. Overproduction, purification and   tryptophan-containing cyclic dipeptides[J]. Bioorganic and Medicinal
                 characterization of FgaPT2, a dimethylallyltryptophan synthase from   Chemistry Letters, 2012, 22: 3866-3869.
                 Aspergillus fumigatus[J]. Microbiology, 2005, 151: 1499-1505.   [32]  WINKELBLECH J, LI S  M.  Biochemical investigations of two 6-
            [13]  YU X, LIU Y, XIE X L, et al. Biochemical characterization of indole   DMATS enzymes from  Streptomyces reveal new features of L-
                 prenyltransferases: Filling the lastgapofprenylation positions by a   tryptophan prenyltransferases[J]. ChemBioChem, 2014, 15: 1030-1039.
                 5-dimethylallyltryptophan synthase from  Aspergillus clavatus[J].   [33]  POCKRANDT D, SACK C, KOSIOL T,  et al. A promiscuous
                 Journal of Biological Chemistry, 2012, 287: 1371-1380.   prenyltransferase from Aspergillus oryzae catalyses C-prenylations of
            [14]  WINKELBLECH J, LIEBHOLD M, GUNERA J, et al. Tryptophan   hydroxynaphthalenes in the presence of different  prenyl  donors[J].
                 C5-, C6- and C7-prenylating enzymes displaying a preference for   Applied Microbiology and Biotechnology, 2014, 98: 4987-4994.
                 C-6 of the indole  ring in the presence of unnatural  dimethylallyl   [34]  ZHENG L J, MAI P, FAN A L, et al. Switching a regular tryptophan
                 diphosphate analogues[J]. Advanced Synthesis and Catalysis, 2015,   C4-prenyltransferase to a reverse tryptophancontaining cyclic
                 357: 975-986.                                     dipeptide  C3-prenyltransferase  by  sequential  site-directed
            [15]  WUNSCH C, ZOU H X, LINNE  U,  et al. C7-prenylation  of   mutagenesis[J]. Organic and Biomolecular Chemistry, 2018, 16: 6688-
                 tryptophanyl and O-prenylation of tyrosyl residues in dipeptides by   6694.
   216   217   218   219   220   221   222   223   224   225   226