Page 138 - 《精细化工》2022年第6期
P. 138

·1204·                            精细化工   FINE CHEMICALS                                 第 39 卷

            3   结论                                                 Catalysis Today, 2012, 180: 148-154.
                                                               [10]  LIU X L, HAN Q  Z, SHI W B, et al. Catalytic oxidation of ethyl
                                                                   acetate over Ru-Cu bimetallic catalysts: Further insights into reaction
                 考察了 Mn/Co 不同物质的量比的 Mn-Co 催化                       mechanism via in situ FTIR and DFT studies[J]. Journal of Catalysis,
            剂催化氧化乙酸乙酯的性能,催化剂表征结果和活                                 2019, 369: 482-492.
                                                               [11]  QIN Y, LIU X L, ZHU T L, et al. Catalytic oxidation of ethyl acetate
            性测试数据表明,Mn/Co 物质的量比显著影响催化
                                                                   over silver catalysts supported on CeO 2 with different morphologies[J].
            剂的晶体结构、表面物化性质、微观结构及氧化还                                 Materials Chemistry and Physics, 2019, 229(2): 32-38.
            原性,进而影响催化剂的活性。乙酸乙酯转化率和                             [12]  JIANG Y W, GAO J H, ZHANG  Q,  et al. Enhanced oxygen
                                                                   vacancies to improve ethyl acetate oxidation over MnO x-CeO 2 catalyst
            反应动力学等数据表明,Mn-Co 复合催化剂表现出                              derived from MOF template[J]. Chemical Engineering Journal, 2019,
                                                                   371(3): 78-87.
            比 MnO 2 、Co 3 O 4 更好的催化活性,其中 Mn 1 Co 1 O x
                                                               [13]  ZHANG Y, WANG M, KANG S Y, et al. Investigation of suitable
            尖晶石催化剂的催化活性与各项表征结果均表现优
                                                                   precursors for manganese oxide catalysts in ethyl acetate oxidation[J].
            异;XRD 表征说明,Mn-Co 复合催化剂具有尖晶石                            Journal of Environmental Sciences, 2021, 104: 17-26.
            结构,其中 Mn 1 Co 1 O x 尖晶石结构含量相对较多,尖                  [14]  MORALES M R,  BARBERO  B P, CADÚS L E. Evaluation and
                                                                   characterization of  Mn-Cu mixed oxide  catalysts for ethanol total
            晶石结构有利于氧物种的迁移;另外,Mn 1 Co 1 O x 具                       oxidation: Influence of copper content[J]. Fuel, 2008, 87(7): 1177-1186.
            有较小的晶粒尺寸(12.4 nm)和较大的比表面积                          [15]  GAO F Y, CHU  C, ZHU W J,  et al. High-efficiency catalytic
                    2
            (68.1 m /g),这可以为氧化反应提供更多吸附与反                           oxidation of nitric oxide over spherical Mn-Co spinel catalyst at low
                                                                   temperature[J]. Applied Surface Science, 2019, 479: 548-556.
            应的活性位点,进而提高反应活性;Mn 1 Co 1 O x 催化                   [16]  DONG C,  QU Z P,  QIN  Y,  et al. Revealing the highly catalytic
                                        4+
                                 2+
            剂具有最高表面 O a ,Co 和 Mn 的摩尔分数分别为                          performance of spinel CoMn 2O 4 for toluene oxidation: Involvement
                                                                   and replenishment of oxygen species using  in situ  designed-TP
            61%和 47%,这会促进其与乙酸乙酯的氧化反应。                              techniques[J]. ACS Catalysis, 2019, 9(8): 6698-6710.
            综合来看,Mn-Co 催化剂利用尖晶石的结构优势,                          [17]  SOARES O S G P, ROCHA R P, ÓRFÃO J J M, et al. Ethyl and
            通过氧空位与氧化还原电子对的协同效应,实现了                                 butyl acetate oxidation over manganese oxides[J]. Chinese Journal of
                                                                   Catalysis, 2018, 39: 27-36.
                        2−
                     4+
                            2+
            “OV-Mn -O -Co ”高效活性位的构筑。                           [18]  TANG W X, XIAO W, WANG S B, et al. Boosting catalytic propane
                 下一步工作将通过调节制备过程中的不同参数                              oxidation over PGM-free Co 3O 4 nanocrystal aggregates through chemical
                                                                   leaching: A comparative study with  Pt and Pd based catalysts[J].
            调控催化剂的活性位数量及空间结构位置,确立表                                 Applied Catalysis B: Environmental, 2018, 226: 585-595.
            面结构与活性间的构效关系;可将该活性组分负载                             [19]  MO S P, ZHANG Q, SUN  Y H,  et al. Gaseous CO and toluene
            到分子筛等载体上制备整体式催化剂,调节工况参                                 co-oxidation over monolithic core-shell Co 3O 4-based hetero-structured
                                                                   catalysts[J]. Journal of Materials Chemistry A, 2019, 7: 16197-16210.
            数使得催化剂具有工业化应用前景。                                   [20]  XU K J (许珂敬). Powder engineering[M]. Beijing: China University
                                                                   of Petroleum Press(中国石油大学出版社), 2010: 238.
            参考文献:                                              [21]  CHEN J D (陈建东), XU W C (许伟城), WU J L (吴军良), et al.
                                                                   Synthesis of metal-organic framework ZIF-8/polydivinylbenzene
            [1]   XIA S  Y, WANG C, ZHU B,  et al. Long-term observations of
                 oxygenated volatile organic compounds (OVOCs) in an urban atmosphere   nanohybrid composite and its adsorption property of VOCs[J].Acta
                 in southern China, 2014-2019[J]. Environmental Pollution, 2021, 270:   Scientiae Circumstantiae (环境科学学报), 2017, 37(5): 1877-1883.
                 116301.                                       [22]  PAN  T  T, DENG H, KANG S Y,  et al. Facile homogeneous
            [2]   HUANG X F,  ZHANG  B, XIA S Y,  et al. Sources of oxygenated   precipitation method to prepare MnO 2 with high performance in
                 volatile organic compounds (OVOCs) in urban atmospheres in North   catalytic oxidation of ethyl acetate[J]. Chemical Engineering Journal,
                 and South China[J]. Environmental Pollution, 2020, 261: 114152.   2021, 417: 129246.
            [3]   ZHANG W L (张文林), SUN T F (孙腾飞), YAN J W (闫佳伟), et   [23]  GAO F Y, TANG  X L,  YI H H,  et al. Improvement of activity,
                 al. Absortion performance of ionic liquids-water complex absorbent   selectivity and H 2O & SO 2-tolerance of micro-mesoporous CrMn 2O 4
                 for VOCs[J].  Acta Petrolei  Sinica ( 石油学报 ), 2019, 35(6):   spinel catalyst for low-temperature NH 3-SCR of NO x[J]. Applied
                 1077-1086.                                        Surface Science, 2019, 466: 411-424.
            [4]   PEI Y, QIN J X, WANG J, et al. Fe-based metal organic framework   [24]  KWON S, DESHLAHRA P, IGLESIA E. Dioxygen activation routes
                 derivative with enhanced Lewis acidity and hierarchical  pores  for   in Mars Van Krevelen redox cycles catalyzed by  metal oxides[J].
                 excellent adsorption of  oxygenated volatile organic compounds[J].   Journal of Catalysis, 2018, 364: 228-247.
                 Science of the Total Environment, 2021, 790: 148132.   [25]  FUJITA T, MASANORI H, TAKASHI T, et al. Correlation between
            [5]   YANG C T, MIAO G, PI Y H, et al. Abatement of various types of   catalytic  activity of supported  gold catalysts for carbon  monoxide
                 VOCs by adsorption/catalytic oxidation: A review[J].Chemical   oxidation and metal-oxygen  binding  energy of the support metal
                 Engineering Journal, 2019, 370: 1128-1153.        oxides[J]. Chinese Journal of Catalysis, 2016, 37(10): 1651-1655.
            [6]   EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic   [26]  JIANG F, WANG  S S, LIU B, et al. Insights into the influence of
                 compounds[J]. Journal of Hazardous Materials, 2004, B109: 113-139.   CeO 2 crystal facet on CO 2 hydrogenation to  methanol over Pd/CeO 2
            [7]   KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation   catalysts[J]. ACS Catalysis, 2020, 10(19): 11493-11509.
                 of volatile organic compounds (VOCs)—A review[J].  Atmospheric   [27]  VARGA G, SÁPI A, VARGA T,  et al. Ambient pressure CO 2
                 Environment, 2016, 140: 117-134.                  hydrogenation over a cobalt/manganese-oxide nanostructured interface:
            [8]   ZHU X B,  ZHANG S, YANG Y, et  al. Enhanced performance for   A combined in situ and ex situ study[J]. Journal of Catalysis, 2020,
                 plasma-catalytic oxidation of ethyl acetate over La 1–xCe xCoO 3+δ   386: 70-80.
                 catalysts[J]. Applied Catalysis B: Environmental, 2017, 213: 97-105.   [28]  ZHU W J (朱文娟), GAO F Y (高凤雨), TANG X L (唐晓龙), et al.
            [9]   BASTOS S S T, CARABINEIRO S A C, ÓRFÃO J J M, et al. Total   Spinel  catalysts: Preparation technology  and  applications in catalytic
                 oxidation of ethyl acetate, ethanol and toluene catalyzed by   purification of gaseous pollutants[J]. Materials Reports (材料导报),
                 exotemplated  manganese  and cerium  oxides loaded with gold[J].   2020, 34(2): 03044-03055.
   133   134   135   136   137   138   139   140   141   142   143