Page 39 - 《精细化工》2022年第6期
P. 39
第 6 期 孟春甫,等: 亚砜配体在金属催化烯丙基官能团化反应中的应用 ·1105·
nitrogen atoms as stereo controllable coordinating elements in [30] DU L, CAO P, XING J, et al. Hydrogen-bond-promoted palladium
palladium-catalyzed asymmetric allylic alkylations[J]. Tetrahedron: catalysis: Allylic alkylation of indoles with unsymmetrical 1,3-
Asymmetry, 1998, 9(21): 3797-3817. disubstituted allyl acetates using chiral bis(sulfoxide) phosphine
[12] SIEDLECKA R, WOJACZYŃSKA E, SKARŻEWSKI J. Chiral ligands[J]. Angewandte Chemie International Edition, 2013, 52(15):
pyrrolidine thioethers: Effective nitrogen-sulfur donating ligands in 4207-4211.
palladium-catalyzed asymmetric allylic alkylations[J]. Tetrahedron: [31] JIA T, CAO P, WANG B, et al. A Cu/Pd cooperative catalysis for
Asymmetry, 2004, 15(9): 1437-1444. enantioselective allylboration of alkenes[J]. Journal of the American
[13] NAKAMURA S, FUKUZUMI T, TORU T. Novel chiral sulfur- Chemical Society, 2015, 137(43): 13760-13763.
containing ferrocenyl ligands for palladium-catalyzed asymmetric [32] TOKUNOH R, SODEOKA M, AOE K I, et al. Synthesis and crystal
allylic substitution[J]. Chirality, 2004, 16(1): 10-12. structure of a new c 2-symmetric chiral bis-sulfoxide ligand and its
[14] CHENG H G, FENG B, CHEN L Y, et al. Rational design of palladium(Ⅱ) complex[J]. Tetrahedron Letters, 1995, 36(44): 8035-
sulfoxide-phosphine ligands for Pd-catalyzed enantioselective allylic 8038.
alkylation reactions[J]. Chemical Communications, 2014, 50(22): [33] LIU J B, CHEN G H, XING J W, et al. Tert-butanesulfinylthioether
2873-2875. ligands: Synthesis and application in palladium-catalyzed asymmetric
[15] FRAUNHOFFER K J, PRABAGARAN N, SIROIS L E, et al. allylic alkylation[J]. Tetrahedron: Asymmetry, 2011, 22(5): 575-579.
Macrolactonization via hydrocarbon oxidation[J]. Journal of the [34] TROST B M, RAO M, DIESKAU A P. A chiral sulfoxide-ligated
American Chemical Society, 2006, 128(28): 9032-9033. ruthenium complex for asymmetric catalysis: Enantio- and
[16] FRAUNHOFFER K J, WHITE M C. Syn-1,2-amino alcohols via regioselective allylic substitution[J]. Journal of the American Chemical
diastereoselective allylic C—H amination[J]. Journal of the Society, 2013, 135(49): 18697-18704.
American Chemical Society, 2007, 129(23): 7274-7276. [35] AKERMARK B, LARSSON E M, OSLOB J D. Allylic carboxylations
[17] BRAUN M G, DOYLE A G. Palladium-catalyzed allylic C—H and lactonization using benzoquinone and hydrogen peroxide or
fluorination[J]. Journal of the American Chemical Society, 2013, tert-butyl hydroperoxide as oxidants[J]. The Journal of Organic
135(35): 12990-12993. Chemistry, 1994, 59(19): 5729-5733.
[18] LIN S, SONG C X, CAI G X, et al. Intra/intermolecular direct allylic [36] UMBREIT M A, SHARPLESS K B. Allylic oxidation of olefins by
alkylation via Pd(Ⅱ)-catalyzed allylic C—H activation[J]. Journal of catalytic and stoichiometric selenium dioxide with tert-butyl
the American Chemical Society, 2008, 130(39): 12901-12903. hydroperoxide[J]. Journal of the American Chemical Society, 1977,
[19] AMMANN S E, LIU W, WHITE M C. Enantioselective allylic C—H 99(16): 5526-5528.
oxidation of terminal olefins to isochromans by palladium(Ⅱ)/chiral [37] KITCHING W, RAPPOPORT Z, WINSTEIN S, et al. Allylic
sulfoxide catalysis[J]. Angewandte Chemie International Edition, oxidation of olefins by palladium acetate1[J]. Journal of the
2016, 55(33): 9571-9575. American Chemical Society, 1966, 88(9): 2054-2055.
[20] LIU W, ALI S Z, AMMANN S E, et al. Asymmetric allylic C—H [38] TROST B M, METZNER P J. Reaction of olefins with palladium
alkylation via palladium(Ⅱ)/cis-ArSOX catalysis[J]. Journal of the trifluoroacetate[J]. Journal of the American Chemical Society, 1980,
American Chemical Society, 2018, 140(34): 10658-10662. 102(10): 3572-3577.
[21] ALLEN J V, BOWER J F, WILLIAMS J M J. Enantioselective [39] CHEN M S, WHITE M C. A sulfoxide-promoted, catalytic method
palladium catalyzed allylic substitution. Electronic and steric effects for the regioselective synthesis of allylic acetates from monosubstituted
of the ligand[J]. Tetrahedron: Asymmetry, 1994, 5(10): 1895-1898. olefins via C—H oxidation[J]. Journal of the American Chemical
[22] CHELUCCI G, BERTA D, SABA A. Chiral sulfoxides and sulfides Society, 2004, 126(5): 1346-1347.
tethered to pyridines as ligands for enantioselective catalysis: [40] ENGELIN C, JENSEN T, RODRIGUEZ-RODRIGUEZ S, et al.
Palladium catalyzed allylic substitution and addition of diethylzinc to Mechanistic investigation of palladium-catalyzed allylic C — H
benzaldehyde[J]. Tetrahedron, 1997, 53(10): 3843-3848. activation[J]. ACS Catalysis, 2013, 3(3): 294-302.
[23] LE FUR N, MOJOVIC L, PLÉ N, et al. Ortho-metalation of [41] COVELL D J, WHITE M C. A chiral Lewis acid strategy for
enantiopure aromatic sulfoxides and stereocontrolled addition to enantioselective allylic C—H oxidation[J]. Angewandte Chemie
imines[J]. The Journal of Organic Chemistry, 2006, 71(7): 2609-2616. International Edition, 2008, 47(34): 6448-6451.
[24] HIROI K, SUZUKI Y, KAWAGISHI R. Chiral β-phosphino [42] CHEN M S, PRABAGARAN N, LABENZ N A, et al. Serial ligand
sulfoxides as chiral ligands in palladium-catalyzed asymmetric allylic catalysis: A highly selective allylic C—H oxidation[J]. Journal of the
nucleophilic substitution reactions[J]. Tetrahedron Letters, 1999, American Chemical Society, 2005, 127(19): 6970-6971.
40(4): 715-718. [43] PARENTY A, MOREAU X, CAMPAGNE J M. Macrolactonizations
[25] HIROI K, SUZUKI Y, ABE I, et al. New chiral sulfoxide ligands in the total synthesis of natural products[J]. Chemical Reviews, 2006,
possessing a phosphano or phosphanoamino functionality in 106(3): 911-939.
palladium-catalyzed asymmetric allylic nucleophilic substitution [44] STANG E M, CHRISTINA WHITE M. Total synthesis and study of
reactions[J]. Tetrahedron, 2000, 56(27): 4701-4710. 6-deoxyerythronolide B by late-stage C—H oxidation[J]. Nature
[26] CHEN J, LANG F, LI D, et al. Palladium-catalyzed asymmetric Chemistry, 2009, 1(7): 547-551.
allylic nucleophilic substitution reactions using chiral tert- [45] YOUNG A J, WHITE M C. Catalytic intermolecular allylic C—H
butanesulfinylphosphine ligands[J]. Tetrahedron: Asymmetry, 2009, alkylation[J]. Journal of the American Chemical Society, 2008,
20(17): 1953-1956. 130(43): 14090-14091.
[27] HIROI K, SUZUKI Y, ABE I. (S)-proline-derived new chiral ligands [46] HOWELL J M, LIU W, YOUNG A J, et al. General allylic C—H
with phosphino, organosulfur or organoselenenyl functionality as an alkylation with tertiary nucleophiles[J]. Journal of the American
enantiocontrollable coordinating element[J]. Tetrahedron: Asymmetry, Chemical Society, 2014, 136(15): 5750-5754.
1999, 10(6): 1173-1188. [47] YOUNG A J, WHITE M C. Allylic C—H alkylation of unactivated
[28] HIROI K, IZAWA I, TAKIZAWA T, et al. N-phosphano nitrogen- α-olefins: Serial ligand catalysis resumed[J]. Angewandte Chemie
containing five-membered aromatic chiral α-sulfoxides as new chiral International Edition, 2011, 50(30): 6824-6827.
ligands in asymmetric palladium-catalyzed allylic alkylation: [48] ROGERS M M, KOTOV V, CHATWICHIEN J, et al. Palladium-
Stereoelectronic effects of the substituents on the aromatic rings[J]. catalyzed oxidative amination of alkenes: Improved catalyst
Tetrahedron, 2004, 60(9): 2155-2162. reoxidation enables the use of alkene as the limiting reagent[J].
[29] XU H, ZUEND S J, WOLL M G, et al. Asymmetric cooperative Organic Letters, 2007, 9(21): 4331-4334.
catalysis of strong Brønsted acid-promoted reactions using chiral
ureas[J]. Science, 2010, 327(5968): 986-990. (下转第 1269 页)