Page 147 - 《精细化工》2022年第7期
P. 147

第 7 期                    张立涛,等:  限域单原子催化剂制备及其催化湿式氧化性能                                   ·1433·


            水的 TOC 去除率持续稳定在 95%以上。连续催化评                            oxidation of acetic acid on carbon-supported ruthenium catalysts[J].
                                                                   Journal of Catalysis, 1997, 168: 104-109.
            价反应的结果证明,催化剂具有很高的催化稳定性,                            [6]   MONTEROS AE D L, LAFAYE G, CERVANTES A, et al. Catalytic
            具有一定的实际应用前景。                                           wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on
                                                                   TiO 2-CeO 2 oxides[J]. Catalysis Today, 2015, 258: 564-569.

                                                               [7]   GAÁLOVÁ J, BARBIER J, ROSSIGNOL S. Ruthenium  versus
                                                                   platinum on cerium materials in wet air oxidation of acetic acid[J].
                                                                   Journal of Hazardous Materials, 2010, 181: 633-639.
                                                               [8]   SONG A,  LU G. Selective oxidation of methylamine over zirconia
                                                                   supported Pt-Ru, Pt and Ru catalysts[J]. Chinese Journal of Chemical
                                                                   Engineering, 2015, 23: 1206-1213.
                                                               [9]   MINH D P, GALLEZOT P, AZABOU S, et al. Catalytic wet air
                                                                   oxidation of olive oil mill effluents: 4. Treatment and detoxification of
                                                                   real effluents[J].  Applied Catalysis B: Environmental, 2008, 84:
                                                                   749-757.
                                                               [10]  KIM K H, IHM S K. Heterogeneous catalytic  wet air oxidation of
                                                                   refractory organic pollutants in industrial wastewaters: A review[J].
                                                                   Journal of Hazardous Materials, 2011, 186: 16-34.
                                                               [11]  YANG L P (阳立平), ZENG F T (曾凡棠), LI D L (李岱霖), et al.

                                                                   Application of carbon material catalyst to the catalytic wet oxidation
               图 12   催化剂在催化湿式氧化连续反应评价结果                           technology[J]. Industrial Water Treatment (工业水处理), 2014,  34
            Fig. 12    Evaluation results of catalysts in CWAO continuous   (1): 10-14.
                    reaction                                   [12]  PENG X J (彭先佳), JIA J J (贾建军), LUAN Z K (栾兆坤), et al.
                                                                   Water treatment materials based on carbon nanotubes[J]. Progress in
                                                                   Chemistry (化学进展), 2009, 21(9): 1987-1992.
            3   结论                                             [13]  LI X (李祥), YANG S X (杨少霞), ZHU W  P  (祝万鹏),  et al.
                                                                   Catalytic wet air oxidation of phenol and aniline over multi-walled
                                                                   carbon nanotubes[J]. Environmental Science (环境科学), 2008, (9):
                 通过原位合成法制备了 Ni 单原子的氮掺杂碳                            2522-2528.
            纳米管载体,其负载贵金属 Ru 对难降解污染物乙酸                          [14]  SORIA-SÁNCHEZ M, MAROTO-VALIENTE A,  ÁLVAREZ-
                                                                   RODRÍGUEZ J,  et al. Carbon  nanostrutured materials as direct
            具有优秀的催化氧化效果,在温度 250  ℃,压力                              catalysts for phenol oxidation in aqueous phase[J]. Applied Catalysis
                                                                   B: Environmental, 2011, 104: 101-109.
            6.5 MPa 的条件下,连续运行 240 h,乙酸的去除率                     [15]  AYUSHEEV A  B, TARAN O P, SERYAK I A,  et al. Ruthenium
            持续稳定在 95%以上,为废水中污染物的近零排放                               nanoparticles supported on nitrogen-doped carbon nanofibers for the
                                                                   catalytic wet air oxidation  of  phenol[J].  Applied Catalysis B:
            提供了技术支撑。                                               Environmental, 2014, 146: 177-185.
                 通过 HAADF-STEM、XAFS、XPS 确定了酸洗                  [16]  CHEN Y J, JI S F, CHEN C, et al. Single-atom catalysts: Synthetic
                                                                   strategies and electrochemical applications[J]. Joule, 2018, 2: 1242-
            后的载体表面 Ni 主要以单原子形式存在,N 对 Ni                            1264.
            的限域起到了十分重要的作用,其可调控表面负载贵                            [17]  ZHAO  C M, WANG Y, LI Z J, et al. Solid-diffusion synthesis of
                                                                   single-atom catalysts directly from bulk metal for efficient CO 2
            金属的催化特性。这是对限域单原子材料在催化领域                                reduction[J]. Joule, 2019, 3: 584-594.
                                                               [18]  FU J L, YANG K X, MA C J, et al. Bimetallic Ru-Cu as a highly
            的一种崭新的探索,拓宽了金属单原子的应用领域。                                active selective and stable catalyst for catalytic wet oxidation of
                 采用 VASP 软件计算了乙酸和 O 2 分子在所构建                       aqueous ammonia to nitrogen[J]. Applied Catalysis B: Environmental,
                                                                   2016, 184: 216-222.
            的目标模型表面的化学吸附性能,分析发现,贵金                             [19]  WANG  Y, MAO J, MENG X G, et al. Catalysis  with two-
            属模型 Ru 在 Ni-NCNT 构型表面对底物乙酸具有最                          dimensional materials confining single atoms: Concept, design, and
                                                                   applications[J]. Chemical Reviews, 2019, 119: 1806-1854.
            高的吸附能,同时对氧的吸附能适中,结合 Ru@Ni-                         [20]  SHANG Y N, CHEN C, ZHANG P, et al. Removal of sulfamethoxazole
            NCNT/AC 催化剂的实验评价结果,证明了 Ni 作为                           from water via activation of persulfate by Fe 3C@NCNTs including
                                                                   mechanism of radical and nonradical process[J]. Chemical Engineering
            单原子助剂可以促进 Ru 催化底物氧化。                                   Journal, 2019, 375: 91-101.
                                                               [21]  PUTRI L K, ONG W J, CHANG W S, et al. Heteroatom doped
            参考文献:                                                  graphene in photocatalysis: A review[J]. Applied Surface Science,
                                                                   2015, 358: 2-14.
            [1]   WANG W (王伟), WANG J B (王建兵), ZHU W P (祝万鹏), et al.   [22]  DUAN J J, CHEN S, JARONIEC  M,  et al. Heteroatom-doped
                 Catalytic wet air oxidation of acetic acid and phenol with Ru/ZrO 2-   graphene-based materials for energy-relevant electrocatalytic processes[J].
                 CeO 2 catalysts[J]. Journal of Molecular Catalysis (分子催化),2007,   ACS Catalysis, 2015, 5: 5207-5234.
                 (5): 401-405.                                 [23]  ZARFL J, FERRI D, SCHILDHAUER T J, et al. DRIFTS study of a
            [2]   YANG M (杨民),  SUN Y (孙颖), WANG Q  Y (王全义),  et al.   commercial Ni/γ-Al 2O 3 CO methanation catalyst[J]. Applied Catalysis
                 Catalytic wet oxidation of h-acid wastewater over TiO 2-supported Ru   A: General, 2015, 495: 104-114.
                 on catalyst[J]. Journal of Fudan University (Natural Science) (复旦  [24]  WANG J, YUAN C K, YAO N, et al. Effect of the nanostructure and
                 学报:  自然科学版), 2003, (3): 339-342.                  the surface composition  of bimetallic Ni-Ru nanoparticles on the
            [3]   CHEN H N (陈航宁), ZHENG Y Y (郑育元), GUO Z Y (郭宗英),   performance of CO methanation[J]. Applied Surface Science, 2018,
                 et al. Wet oxidation of wastewater containing organic acids over TiO 2   441: 816-823.
                 supported noble metal catalyst[J]. Chemical  Reaction Engineering   [25]  JIN Y Y (靳永勇), HAO P P (郝盼盼), REN J (任军), et al. Single
                 and Technology (化学反应工程与工艺),2012, 28(4): 325-329.   atom catalysis: Concept, method and application[J]. Progress in
            [4]   WANG J B (王建兵), ZHU W P (祝万鹏), WANG W (王伟), et al.   Chemistry (化学进展), 2015, 27(12): 1689-1704.
                 Catalytic wet air oxidation of phenol with Ru ZrO 2-CeO 2 catalyst[J].   [26]  YANG H B, HUNG S F, LIU S, et al. Atomically dispersed Ni(Ⅰ) as
                 Environmental Science (环境科学), 2007, (7): 1460-1465.   the active site for electrochemical CO 2 reduction[J]. Nature Energy,
            [5]   GALLEZOT P, CHAUMET S, PERRARD A, et al. Catalytic wet air   2018, 3: 140-147.
   142   143   144   145   146   147   148   149   150   151   152