Page 147 - 《精细化工》2022年第7期
P. 147
第 7 期 张立涛,等: 限域单原子催化剂制备及其催化湿式氧化性能 ·1433·
水的 TOC 去除率持续稳定在 95%以上。连续催化评 oxidation of acetic acid on carbon-supported ruthenium catalysts[J].
Journal of Catalysis, 1997, 168: 104-109.
价反应的结果证明,催化剂具有很高的催化稳定性, [6] MONTEROS AE D L, LAFAYE G, CERVANTES A, et al. Catalytic
具有一定的实际应用前景。 wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on
TiO 2-CeO 2 oxides[J]. Catalysis Today, 2015, 258: 564-569.
[7] GAÁLOVÁ J, BARBIER J, ROSSIGNOL S. Ruthenium versus
platinum on cerium materials in wet air oxidation of acetic acid[J].
Journal of Hazardous Materials, 2010, 181: 633-639.
[8] SONG A, LU G. Selective oxidation of methylamine over zirconia
supported Pt-Ru, Pt and Ru catalysts[J]. Chinese Journal of Chemical
Engineering, 2015, 23: 1206-1213.
[9] MINH D P, GALLEZOT P, AZABOU S, et al. Catalytic wet air
oxidation of olive oil mill effluents: 4. Treatment and detoxification of
real effluents[J]. Applied Catalysis B: Environmental, 2008, 84:
749-757.
[10] KIM K H, IHM S K. Heterogeneous catalytic wet air oxidation of
refractory organic pollutants in industrial wastewaters: A review[J].
Journal of Hazardous Materials, 2011, 186: 16-34.
[11] YANG L P (阳立平), ZENG F T (曾凡棠), LI D L (李岱霖), et al.
Application of carbon material catalyst to the catalytic wet oxidation
图 12 催化剂在催化湿式氧化连续反应评价结果 technology[J]. Industrial Water Treatment (工业水处理), 2014, 34
Fig. 12 Evaluation results of catalysts in CWAO continuous (1): 10-14.
reaction [12] PENG X J (彭先佳), JIA J J (贾建军), LUAN Z K (栾兆坤), et al.
Water treatment materials based on carbon nanotubes[J]. Progress in
Chemistry (化学进展), 2009, 21(9): 1987-1992.
3 结论 [13] LI X (李祥), YANG S X (杨少霞), ZHU W P (祝万鹏), et al.
Catalytic wet air oxidation of phenol and aniline over multi-walled
carbon nanotubes[J]. Environmental Science (环境科学), 2008, (9):
通过原位合成法制备了 Ni 单原子的氮掺杂碳 2522-2528.
纳米管载体,其负载贵金属 Ru 对难降解污染物乙酸 [14] SORIA-SÁNCHEZ M, MAROTO-VALIENTE A, ÁLVAREZ-
RODRÍGUEZ J, et al. Carbon nanostrutured materials as direct
具有优秀的催化氧化效果,在温度 250 ℃,压力 catalysts for phenol oxidation in aqueous phase[J]. Applied Catalysis
B: Environmental, 2011, 104: 101-109.
6.5 MPa 的条件下,连续运行 240 h,乙酸的去除率 [15] AYUSHEEV A B, TARAN O P, SERYAK I A, et al. Ruthenium
持续稳定在 95%以上,为废水中污染物的近零排放 nanoparticles supported on nitrogen-doped carbon nanofibers for the
catalytic wet air oxidation of phenol[J]. Applied Catalysis B:
提供了技术支撑。 Environmental, 2014, 146: 177-185.
通过 HAADF-STEM、XAFS、XPS 确定了酸洗 [16] CHEN Y J, JI S F, CHEN C, et al. Single-atom catalysts: Synthetic
strategies and electrochemical applications[J]. Joule, 2018, 2: 1242-
后的载体表面 Ni 主要以单原子形式存在,N 对 Ni 1264.
的限域起到了十分重要的作用,其可调控表面负载贵 [17] ZHAO C M, WANG Y, LI Z J, et al. Solid-diffusion synthesis of
single-atom catalysts directly from bulk metal for efficient CO 2
金属的催化特性。这是对限域单原子材料在催化领域 reduction[J]. Joule, 2019, 3: 584-594.
[18] FU J L, YANG K X, MA C J, et al. Bimetallic Ru-Cu as a highly
的一种崭新的探索,拓宽了金属单原子的应用领域。 active selective and stable catalyst for catalytic wet oxidation of
采用 VASP 软件计算了乙酸和 O 2 分子在所构建 aqueous ammonia to nitrogen[J]. Applied Catalysis B: Environmental,
2016, 184: 216-222.
的目标模型表面的化学吸附性能,分析发现,贵金 [19] WANG Y, MAO J, MENG X G, et al. Catalysis with two-
属模型 Ru 在 Ni-NCNT 构型表面对底物乙酸具有最 dimensional materials confining single atoms: Concept, design, and
applications[J]. Chemical Reviews, 2019, 119: 1806-1854.
高的吸附能,同时对氧的吸附能适中,结合 Ru@Ni- [20] SHANG Y N, CHEN C, ZHANG P, et al. Removal of sulfamethoxazole
NCNT/AC 催化剂的实验评价结果,证明了 Ni 作为 from water via activation of persulfate by Fe 3C@NCNTs including
mechanism of radical and nonradical process[J]. Chemical Engineering
单原子助剂可以促进 Ru 催化底物氧化。 Journal, 2019, 375: 91-101.
[21] PUTRI L K, ONG W J, CHANG W S, et al. Heteroatom doped
参考文献: graphene in photocatalysis: A review[J]. Applied Surface Science,
2015, 358: 2-14.
[1] WANG W (王伟), WANG J B (王建兵), ZHU W P (祝万鹏), et al. [22] DUAN J J, CHEN S, JARONIEC M, et al. Heteroatom-doped
Catalytic wet air oxidation of acetic acid and phenol with Ru/ZrO 2- graphene-based materials for energy-relevant electrocatalytic processes[J].
CeO 2 catalysts[J]. Journal of Molecular Catalysis (分子催化),2007, ACS Catalysis, 2015, 5: 5207-5234.
(5): 401-405. [23] ZARFL J, FERRI D, SCHILDHAUER T J, et al. DRIFTS study of a
[2] YANG M (杨民), SUN Y (孙颖), WANG Q Y (王全义), et al. commercial Ni/γ-Al 2O 3 CO methanation catalyst[J]. Applied Catalysis
Catalytic wet oxidation of h-acid wastewater over TiO 2-supported Ru A: General, 2015, 495: 104-114.
on catalyst[J]. Journal of Fudan University (Natural Science) (复旦 [24] WANG J, YUAN C K, YAO N, et al. Effect of the nanostructure and
学报: 自然科学版), 2003, (3): 339-342. the surface composition of bimetallic Ni-Ru nanoparticles on the
[3] CHEN H N (陈航宁), ZHENG Y Y (郑育元), GUO Z Y (郭宗英), performance of CO methanation[J]. Applied Surface Science, 2018,
et al. Wet oxidation of wastewater containing organic acids over TiO 2 441: 816-823.
supported noble metal catalyst[J]. Chemical Reaction Engineering [25] JIN Y Y (靳永勇), HAO P P (郝盼盼), REN J (任军), et al. Single
and Technology (化学反应工程与工艺),2012, 28(4): 325-329. atom catalysis: Concept, method and application[J]. Progress in
[4] WANG J B (王建兵), ZHU W P (祝万鹏), WANG W (王伟), et al. Chemistry (化学进展), 2015, 27(12): 1689-1704.
Catalytic wet air oxidation of phenol with Ru ZrO 2-CeO 2 catalyst[J]. [26] YANG H B, HUNG S F, LIU S, et al. Atomically dispersed Ni(Ⅰ) as
Environmental Science (环境科学), 2007, (7): 1460-1465. the active site for electrochemical CO 2 reduction[J]. Nature Energy,
[5] GALLEZOT P, CHAUMET S, PERRARD A, et al. Catalytic wet air 2018, 3: 140-147.