Page 162 - 《精细化工》2022年第9期
P. 162
·1880· 精细化工 FINE CHEMICALS 第 39 卷
[12] FU Y, NI Y M, CHEN Z Y, et al. Achieving high conversion of
3 结论 syngas to aromatics[J]. Journal of Energy Chemistry, 2021, 66: 597-
602.
[13] ZHANG P, MENG F H, LI X J, et al. Excellent selectivity for direct
采用不同金属 Me(Ce、Zn、Zr)掺杂改性合 conversion of syngas to light olefins over a Mn-Ga oxide and
成了 SAPO-34 分子筛,并与 GaZrO x 金属氧化物结 SAPO-34 bifunctional catalyst[J]. Catalysis Science & Technology,
2019, 9(20): 5577-5581.
合制备了双功能催化剂用于 STO 反应,研究了不同 [14] CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for
金属掺杂和 Zr 掺杂量改性对 SAPO-34 分子筛结构、 one-step conversion of syngas into aromatics with excellent selectivity
and stability[J]. Chem, 2017, 3(2): 334-347.
物化性质及催化性能的影响。掺杂不同金属均合成 [15] LI N, JIAO F, PAN X L, et al. High-quality gasoline directly from
了具有 CHA 结构的 SAPO-34 分子筛,与掺杂 Ce syngas by dual metal oxide-zeolite (OX-ZEO) catalysis[J]. Angewandte
Chemie International Edition, 2019, 58(22): 7400-7404.
和 Zn 的样品相比,掺杂 Zr 后的 ZrSP-34 分子筛结 [16] YANG M, FAN D, WEI Y X, et al. Recent progress in methanol-
晶度相对较高,且适量的 Zr 有利于减小 SAPO-34 to-olefins (MTO) catalysts[J]. Advanced Materials, 2019, 31(50):
1902181.
的颗粒尺寸,Zr 过量时导致多余的 Zr 未完全进入分 [17] PAN X L, JIAO F, MIAO D Y, et al. Oxide-zeolite-based composite
子筛骨架结构中,以 ZrO 2 形式存在于分子筛表面, catalyst concept that enables syngas chemistry beyond fischer-tropsch
synthesis[J]. Chemical Reviews, 2021, 121(11): 6588-6609.
覆盖了酸性中心。Zr 掺杂量为 1.0%时得到的 SAPO- [18] GAO B B, YANG M, QIAO Y Y, et al. A low-temperature approach
34 分子筛颗粒尺寸最小,平均粒径仅为 0.53 μm, to synthesize low-silica SAPO-34 nanocrystals and their application
in the methanol-to-olefins (MTO) reaction[J]. Catalysis Science &
强酸量适中(1.34 mmol/g)。在反应温度为 400 ℃、 Technology, 2016, 6(20): 7569-7578.
压力为 2.5 MPa、空速 6000 mL/(h·g)、1.0% ZrSP-34 [19] LI J F (李俊汾), FAN W B (樊卫斌), DONG M (董梅), et al.
Synthesis and MTO catalytic performance of SAPO-34[J]. Chemical
=
与 GaZrO x 质量比为 1∶5 时,CO 转化率和 C 2~4 选 Journal of Chinese Universities (高等学校化学学报), 2011, 32(3):
择性均达到最高值,分别为 21.2%和 82.4%。本文 765-771.
[20] YANG L L (杨浪浪), WANG W L (王伟林), MENG F H (孟凡会),
关于 SAPO-34 分子筛的研究结果对合成气直接转化 et al. Advances in zeolite of bifunctional catalyst for direct
制芳烃及制液体燃料等反应的双功能催化剂中其他 hydrogenation of CO/CO 2[J]. Fine Chemicals (精细化工), 2020,
37(8): 1561-1566,1614.
分子筛,如 ZSM-5 的理性设计可起到积极的贡献。
[21] HU X Q, YUAN L, CHENG S M, et al. GeAPSO-34 molecular
sieves: Synthesis, characterization and methanol-to-olefins performance[J].
参考文献: Catalysis Communications, 2019, 123: 38-43.
[22] KIM T H, GIM M Y, HWANG G, et al. Effects of Ce/Al molar ratio
[1] TORRES G H M, BITTER J H, KHARE C B, et al. Supported iron
nanoparticles as catalysts for sustainable production of lower in Ce-incorporated mesoporous SAPO-34 on the physicochemical
olefins[J]. Science, 2012, 335(6070): 835-838. property and catalytic performance in the selective production of
[2] ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for light olefins via conversion of chloromethane[J]. Applied Catalysis
direct production of lower olefins from syngas[J]. Nature, 2016, A: General, 2021, 615: 118061.
538(7623): 84-87. [23] SUN C, WANG Y Q, WANG Z, et al. Fabrication of hierarchical
[3] XING Y (邢宇), ZHAO C X (赵晨曦), JIA G P (贾高鹏), et al. ZnSAPO-34 by alkali treatment with improved catalytic performance
Fe/K/Mg—O—Al catalysts for direct production of lower olefins in the methanol-to-olefin reaction[J]. Comptes Rendus Chimie, 2018,
from syngas[J]. Fine Chemicals (精细化工), 2020, 37(5): 968-975. 21(1): 61-70.
[4] JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to [24] AGHAEI E, HAGHIGHI M, PAZHOHNIYA Z, et al. One-pot
light olefins[J]. Science, 2016, 351(6277): 1065-1068. hydrothermal synthesis of nanostructured ZrAPSO-34 powder: Effect
[5] ZHOU W (周伟),CHENG K (成康),ZHANG Q H (张庆红), et al. of Zr-loading on physicochemical properties and catalytic performance in
Relay catalysis in the conversion of syngas (in Chinese)[J]. Chinese conversion of methanol to ethylene and propylene[J]. Microporous
Science Bulletin (科学通报), 2021, 66(10): 1157-1169. and Mesoporous Materials, 2016, 226: 331-343.
[6] LI G, JIAO F, PAN X L, et al. Role of SAPO-18 acidity in direct [25] DONG X Q, LIU C, MIAO Q, et al. Comparison of catalytic
syngas conversion to light olefins[J]. ACS Catalysis, 2020, 10(21): performance of metal-modified SAPO-34: A molecular simulation
12370-12375. study[J]. Journal of Molecular Modeling, 2019, 25(9): 270.
[7] CHENG K, GU B, LIU X L, et al. Direct and highly selective [26] SEDIGHI M, GHASEMI M, SADEQZADEH M, et al. Thorough
conversion of synthesis gas into lower olefins: Design of a bifunctional study of the effect of metal-incorporated SAPO-34 molecular sieves
catalyst combining methanol synthesis and carbon-carbon coupling[J]. on catalytic performances in MTO process[J]. Powder Technology,
Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. 2016, 291: 131-139.
[8] LIU X, ZHOU W, YANG Y, et al. Design of efficient bifunctional [27] ZHANG P, MA L X, MENG F H, et al. Boosting CO 2 hydrogenation
catalysts for direct conversion of syngas into lower olefins via performance for light olefin synthesis over GaZrO x combined with
methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, SAPO-34[J]. Applied Catalysis B: Environmental, 2022, 305: 121042.
9(20): 4708-4718. [28] TONG M L, HONDO E, GAPU C L, et al. Hydrogenation of CO 2 to
[9] YANG G N, MENG F H, ZHANG P, et al. Effects of preparation LPG over CuZnZr/MeSAPO-34 catalysts[J]. New Journal of
method and precipitant on Mn-Ga oxide in combination with Chemistry, 2020, 44(22): 9328-9336.
SAPO-34 for syngas conversion into light olefins[J]. New Journal of [29] ZHANG S C, WEN Z Y, YANG L, et al. Controllable synthesis of
Chemistry, 2021, 45: 7967-7976. hierarchical porous petal-shaped SAPO-34 zeolite with excellent
[10] MENG F H, LI X J, ZHANG P, et al. Highly active ternary oxide DTO performance[J]. Microporous and Mesoporous Materials, 2019,
ZrCeZnO x combined with SAPO-34 zeolite for direct conversion of 274: 220-226.
syngas into light olefins[J]. Catalysis Today, 2020, 368: 118-125. [30] TONG M L, CHIZEMA L G, CHANG X N, et al. Tandem catalysis
[11] WANG M H, KANG J C, XIONG X W, et al. Effect of zeolite over tailored ZnO-ZrO 2/MnSAPO-34 composite catalyst for enhanced
topology on the hydrocarbon distribution over bifunctional ZnAlO/ light olefins selectivity in CO 2 hydrogenation[J]. Microporous and
SAPO catalysts in syngas conversion[J]. Catalysis Today, 2020, 371: Mesoporous Materials, 2021, 320: 111105.
85-92. (下转第 1900 页)