Page 162 - 《精细化工》2022年第9期
P. 162

·1880·                            精细化工   FINE CHEMICALS                                 第 39 卷

                                                               [12]  FU  Y, NI Y M, CHEN Z  Y,  et al. Achieving  high conversion of
            3   结论                                                 syngas to aromatics[J]. Journal of Energy Chemistry, 2021, 66: 597-
                                                                   602.
                                                               [13]  ZHANG P, MENG F H, LI X J, et al. Excellent selectivity for direct
                 采用不同金属 Me(Ce、Zn、Zr)掺杂改性合                          conversion of syngas to light  olefins over a Mn-Ga oxide and
            成了 SAPO-34 分子筛,并与 GaZrO x 金属氧化物结                       SAPO-34 bifunctional catalyst[J]. Catalysis Science &  Technology,
                                                                   2019, 9(20): 5577-5581.
            合制备了双功能催化剂用于 STO 反应,研究了不同                          [14]  CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for
            金属掺杂和 Zr 掺杂量改性对 SAPO-34 分子筛结构、                         one-step conversion  of syngas  into aromatics with excellent  selectivity
                                                                   and stability[J]. Chem, 2017, 3(2): 334-347.
            物化性质及催化性能的影响。掺杂不同金属均合成                             [15]  LI N, JIAO F, PAN X L, et al. High-quality gasoline directly from
            了具有 CHA 结构的 SAPO-34 分子筛,与掺杂 Ce                         syngas by dual metal oxide-zeolite (OX-ZEO) catalysis[J]. Angewandte
                                                                   Chemie International Edition, 2019, 58(22): 7400-7404.
            和 Zn 的样品相比,掺杂 Zr 后的 ZrSP-34 分子筛结                   [16]  YANG M, FAN D, WEI Y X,  et al. Recent progress in methanol-
            晶度相对较高,且适量的 Zr 有利于减小 SAPO-34                           to-olefins (MTO) catalysts[J]. Advanced Materials, 2019, 31(50):
                                                                   1902181.
            的颗粒尺寸,Zr 过量时导致多余的 Zr 未完全进入分                        [17]  PAN X L, JIAO F, MIAO D Y, et al. Oxide-zeolite-based composite
            子筛骨架结构中,以 ZrO 2 形式存在于分子筛表面,                            catalyst concept that enables syngas chemistry beyond fischer-tropsch
                                                                   synthesis[J]. Chemical Reviews, 2021, 121(11): 6588-6609.
            覆盖了酸性中心。Zr 掺杂量为 1.0%时得到的 SAPO-                     [18]  GAO B B, YANG M, QIAO Y Y, et al. A low-temperature approach
            34 分子筛颗粒尺寸最小,平均粒径仅为 0.53  μm,                          to synthesize low-silica SAPO-34 nanocrystals and their application
                                                                   in the methanol-to-olefins (MTO)  reaction[J]. Catalysis Science  &
            强酸量适中(1.34 mmol/g)。在反应温度为 400  ℃、                      Technology, 2016, 6(20): 7569-7578.
            压力为 2.5 MPa、空速 6000 mL/(h·g)、1.0% ZrSP-34          [19]  LI J F (李俊汾), FAN W  B  (樊卫斌), DONG M (董梅),  et al.
                                                                   Synthesis and MTO catalytic performance of SAPO-34[J]. Chemical
                                                      =
            与 GaZrO x 质量比为 1∶5 时,CO 转化率和 C 2~4 选                   Journal of Chinese Universities (高等学校化学学报), 2011, 32(3):
            择性均达到最高值,分别为 21.2%和 82.4%。本文                           765-771.
                                                               [20]  YANG L L (杨浪浪), WANG W L (王伟林), MENG F H (孟凡会),
            关于 SAPO-34 分子筛的研究结果对合成气直接转化                            et al.  Advances in zeolite of bifunctional catalyst for direct
            制芳烃及制液体燃料等反应的双功能催化剂中其他                                 hydrogenation of  CO/CO 2[J]. Fine  Chemicals (精细化工), 2020,
                                                                   37(8): 1561-1566,1614.
            分子筛,如 ZSM-5 的理性设计可起到积极的贡献。
                                                               [21]  HU X Q,  YUAN L, CHENG S M,  et al. GeAPSO-34 molecular
                                                                   sieves: Synthesis, characterization and methanol-to-olefins performance[J].
            参考文献:                                                  Catalysis Communications, 2019, 123: 38-43.
                                                               [22]  KIM T H, GIM M Y, HWANG G, et al. Effects of Ce/Al molar ratio
            [1]   TORRES G H M, BITTER J H, KHARE C B, et al. Supported iron
                 nanoparticles as catalysts for sustainable production  of lower   in Ce-incorporated mesoporous SAPO-34  on the physicochemical
                 olefins[J]. Science, 2012, 335(6070): 835-838.    property and catalytic performance in the selective production of
            [2]   ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for   light olefins via conversion of chloromethane[J]. Applied Catalysis
                 direct production  of lower  olefins from syngas[J]. Nature, 2016,   A: General, 2021, 615: 118061.
                 538(7623): 84-87.                             [23]  SUN  C, WANG Y  Q, WANG  Z,  et al. Fabrication of hierarchical
            [3]  XING Y  (邢宇), ZHAO C X  (赵晨曦), JIA G P (贾高鹏),  et al.   ZnSAPO-34 by alkali treatment with improved catalytic performance
                 Fe/K/Mg—O—Al catalysts for direct production  of lower olefins   in the methanol-to-olefin reaction[J]. Comptes Rendus Chimie, 2018,
                 from syngas[J]. Fine Chemicals (精细化工), 2020, 37(5): 968-975.   21(1): 61-70.
            [4]   JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to   [24]  AGHAEI E, HAGHIGHI M, PAZHOHNIYA Z,  et al. One-pot
                 light olefins[J]. Science, 2016, 351(6277): 1065-1068.   hydrothermal synthesis of nanostructured ZrAPSO-34 powder: Effect
            [5]  ZHOU W  (周伟),CHENG K (成康),ZHANG Q H (张庆红), et al.   of Zr-loading on physicochemical properties and catalytic performance in
                 Relay catalysis in the conversion of syngas (in Chinese)[J]. Chinese   conversion of methanol to ethylene and propylene[J]. Microporous
                 Science Bulletin (科学通报), 2021, 66(10): 1157-1169.   and Mesoporous Materials, 2016, 226: 331-343.
            [6]   LI G, JIAO F, PAN X L,  et al. Role of SAPO-18 acidity in direct   [25]  DONG X  Q, LIU C, MIAO Q,  et al. Comparison  of catalytic
                 syngas conversion to light olefins[J]. ACS Catalysis, 2020, 10(21):   performance of  metal-modified SAPO-34: A  molecular simulation
                 12370-12375.                                      study[J]. Journal of Molecular Modeling, 2019, 25(9): 270.
            [7]   CHENG K, GU B, LIU X L,  et al. Direct and highly selective   [26]  SEDIGHI M, GHASEMI M, SADEQZADEH M,  et al. Thorough
                 conversion of synthesis gas into lower olefins: Design of a bifunctional   study of the effect of metal-incorporated SAPO-34 molecular sieves
                 catalyst combining methanol synthesis and carbon-carbon coupling[J].   on catalytic performances in MTO process[J]. Powder Technology,
                 Angewandte Chemie International Edition, 2016, 55(15): 4725-4728.   2016, 291: 131-139.
            [8]   LIU X, ZHOU W, YANG Y, et al. Design of efficient bifunctional   [27]  ZHANG P, MA L X, MENG F H, et al. Boosting CO 2 hydrogenation
                 catalysts for direct conversion of syngas into lower olefins  via   performance for light olefin synthesis over GaZrO x combined  with
                 methanol/dimethyl  ether intermediates[J].  Chemical Science, 2018,   SAPO-34[J]. Applied Catalysis B: Environmental, 2022, 305: 121042.
                 9(20): 4708-4718.                             [28]  TONG M L, HONDO E, GAPU C L, et al. Hydrogenation of CO 2 to
            [9]   YANG  G N, MENG F H, ZHANG P,  et al. Effects of preparation   LPG over CuZnZr/MeSAPO-34 catalysts[J]. New Journal of
                 method and precipitant on Mn-Ga oxide in combination with   Chemistry, 2020, 44(22): 9328-9336.
                 SAPO-34 for syngas conversion into light olefins[J]. New Journal of   [29]  ZHANG S C, WEN Z Y, YANG L, et al. Controllable synthesis of
                 Chemistry, 2021, 45: 7967-7976.                   hierarchical porous petal-shaped SAPO-34 zeolite with excellent
            [10]  MENG F H, LI X J, ZHANG P, et al. Highly active ternary oxide   DTO performance[J]. Microporous and Mesoporous Materials, 2019,
                 ZrCeZnO x combined with SAPO-34 zeolite for direct conversion of   274: 220-226.
                 syngas into light olefins[J]. Catalysis Today, 2020, 368: 118-125.   [30]  TONG M L, CHIZEMA L G, CHANG X N, et al. Tandem catalysis
            [11]  WANG M H, KANG J C, XIONG  X W,  et al. Effect of zeolite   over tailored ZnO-ZrO 2/MnSAPO-34 composite catalyst for enhanced
                 topology on the hydrocarbon distribution over bifunctional ZnAlO/   light olefins selectivity in CO 2 hydrogenation[J]. Microporous and
                 SAPO catalysts in syngas conversion[J]. Catalysis Today, 2020, 371:   Mesoporous Materials, 2021, 320: 111105.
                 85-92.                                                                      (下转第 1900 页)
   157   158   159   160   161   162   163   164   165   166   167