Page 182 - 《精细化工》2022年第9期
P. 182
·1900· 精细化工 FINE CHEMICALS 第 39 卷
低的优点。然后与三氟甲磺酸甲酯室温下反应得到 [11] ELWAIE T A, ABBAS S E, ALY E I, et al. HER2 kinase-targeted
4,5-二氢-4,4-二甲基-2-(甲硫基)唑三氟甲磺酸盐 breast cancer therapy: Design, synthesis, and in vitro and in vivo
evaluation of novel lapatinib congeners as selective and potent HER2
(ⅩⅩ),两步反应收率 68.6%。 inhibitors with favorable metabolic stability[J]. Journal of Medicinal
4
(4)N -[3-甲基-4-([1,2,4]三唑并[1,5-a]吡啶-7- Chemistry, 2020, 63(24): 15906-15945.
[12] CHEN N, HUANG Z Y, XU J X, et al. Thorpe-ingold effect in the
氧基)苯基]-4,6-喹唑啉二胺和 4,5-二氢-4,4-二甲基-
reaction of vicinal amino primary alcohol hydrogen sulfates and
2-(甲硫基)唑三氟甲磺酸盐在 DMF 中,以三乙胺 carbon disulfide[J]. Tetrahedron, 2011, 67(41): 7971-7976.
为碱反应得到妥卡替尼,收率 62.8%,HPLC 纯度 [13] YIN L F (尹灵峰), MAO Y J (茆勇军), ZHAO Z W (赵智伟), et al.
Preparation method of irbinitinib and intermediate: CN109942576[P].
99.08%。 2019-06-28.
[14] VERMA S, KUMAR N, JAIN, S L. Copper( Ⅱ ) trans-bis-
参考文献: (glycinato): An efficient heterogeneous catalyst for cross coupling of
[1] LEE A. Tucatinib: First approval[J]. Drugs, 2020, 80(10): 1033- 1038. phenols with aryl halides[J]. Tetrahedron Letters, 2012, 53(35):
[2] SHAH M, WEDAM S, CHENG J, et al. FDA approval summary: 4665-4668.
Tucatinib for the treatment of patients with advanced or metastatic [15] CHENG Y J(成宜娟), SUN L P(孙丽萍). Research progress towards
HER2-positive breast cancer[J]. Clinical Cancer Research, 2021, copper-catalyzed coupling reactions for C—N bonds and C—O
27(5): 1220-1226. bonds[J]. Chinese Journal of Organic Chemistry(有机化学), 2013,
[3] FARES J, KANOJIA D, RASHIDI A, et al. Landscape of 33(5): 877-890.
combination therapy trials in breast cancer brain metastasis[J]. [16] MA D W, ZHANG Y D, YAO J C, et al. Accelerating effect induced
Cancer, 2020, 147(7): 1939-1952. by the structure of α-amino acid in the copper-catalyzed coupling
[4] MURTHY R K, LOI S, OKINES A, et al. Tucatinib, trastuzumab, reaction of aryl halides with α-amino acids. Synthesis of
and capecitabine for HER2-positive metastatic breast cancer[J]. New benzolactam-V8[J]. Journal of the American Chemical Society, 1998,
England Journal of Medicine, 2020, 382(7): 597-609. 120(48): 12459-12467.
[5] LYSSIKATOS J P, MARMSATER F P, ZHAO Q, et al. ErbB [17] ZHANG H H, AN Y L, ZHAO S Y, et al. An improved procedure for
inhibitors: WO2007059257[P]. 2007-05-24. the preparation of apraclonidine hydrochloride[J]. Organic
[6] YIN L, MAO Y J, LIU Y W, et al. New synthetic route to Preparations and Procedures International, 2016, 48(5): 401-404.
tucatinib[J]. Synthesis, 2019, 51(13): 2660-2664. [18] ZHANG Z X (张竹霞), LYU R W (吕荣文), ZHANG K K (张珂珂),
[7] ZHANG T J (张天军), GAO J L (高军龙). New synthetic process of et al. Reduction of aromatic nitro compounds with hydrazine
tucatinib[J]. Shandong Chemical Industry (山东化工), 2020, 49(5): hydrate[J]. Fine Chemicals (精细化工), 2001, 18(4): 239-242.
25-28. [19] TEWARI N, NAIR D, NIZAR H, et al. An improved process for the
[8] GRAY N S, JANG J C, JANNE P, et al. Cyano quinoline amide preparation of 4,4-dimethyloxazolidine-2-thione[J]. Organic Process
compounds as HER2 inhibitors and methods of use: WO2019241715[P]. Research & Development, 2007, 11(3): 466-467.
2019-12-19. [20] DELAUNAY D, TOUPET L, CORRE M L, et al. Reactivity of
[9] ZHANG H (张海), ZHONG Q (钟强), LIU Z W (刘志威), et al. β-amino alcohols with carbon disulfide study on the synthesis of
Preparation method of tucatinib: CN112159404[P]. 2020-10-16. 2-oxazolidinethiones and 2-thiazolidinethiones[J]. Journal of Organic
[10] AYOTHIRAMAN R, BANDARU D, PARANTHAMAN R, et al. Chemistry, 1995, 60(20): 6604-6607.
T3P-mediated N—N cyclization for the synthesis of 1,2,4-triazolo[1,5- [21] WU Y K, YANG Y Q, HU Q. A facile access to chiral 4-isopropyl-,
a]pyridines[J]. Organic Process Research & Development, 2019, 4-benzyl-, and 4-phenyloxazolidine-2-thione[J]. Journal of Organic
23(11): 2510-2515. Chemistry, 2004, 69(11): 3990-3992.
(上接第 1880 页) Chemical Communications, 2003, (21): 2734-2735.
[37] PANIAGUA M, MORALES G, MELERO J A, et al. Understanding
[31] YANG M, TIAN P, WANG C, et al. A top-down approach to prepare
silicoaluminophosphate molecular sieve nanocrystals with improved the role of Al/Zr ratio in Zr-Al-Beta zeolite: Towards the one-pot
catalytic activity[J]. Chemical Communications, 2014, 50(15): 1845- production of GVL from glucose[J]. Catalysis Today, 2021, 367:
1847. 228-238.
[32] XIN M D (忻睦迪), XING E H (邢恩会), OUYANG Y (欧阳颖), et [38] HUANG Y X, MA H F, XU Z Q, et al. Role of nanosized sheet-like
al. Influence of status of Zn species in Zn/ZSM-5 on its catalytic SAPO-34 in bifunctional catalyst for syngas-to-olefins reaction[J].
performance[J]. Petroleum Processing and Petrochemicals (石油炼 Fuel, 2020, 273: 117771.
制与化工), 2019, 50(12): 42-50. [39] HUANG Y X, MA H F, XU Z Q, et al. Utilization of SAPO-18 or
[33] LONG H Y, JIN F Y, XIONG G, et al. Effect of lanthanum and SAPO-35 in the bifunctional catalyst for the direct conversion of
phosphorus on the aromatization activity of Zn/ZSM-5 in FCC syngas to light olefins[J]. RSC Advances, 2021, 11(23): 13876-
gasoline upgrading[J]. Microporous and Mesoporous Materials, 2014, 13884.
198: 29-34. [40] SU J J, LIU C, LIU S L, et al. High conversion of syngas to ethene
[34] YAO J H, RONG Y Z, GAO Z Y, et al. Metal-organic framework- and propene on bifunctional catalysts via the tailoring of SAPO
assisted synthesis of Zr-modified SAPO-34 zeolites with hierarchical zeolite structure[J]. Cell Reports Physical Science, 2021, 2(1): 100290.
porous structure for the catalytic transformation of methanol to [41] WANG S, WANG P F, SHI D Z, et al. Direct conversion of syngas
olefins[J]. Catalysis Science & Technology, 2022, 12: 894-905. into light olefins with low CO 2 emission[J]. ACS Catalysis, 2020,
[35] SUN Q M, MA Y H, WANG N, et al. High performance nanosheet- 10(3): 2046-2059.
like silicoaluminophosphate molecular sieves: Synthesis, 3D EDT [42] SU J J, WANG D, WANG Y D, et al. Direct conversion of syngas
structural analysis and MTO catalytic studies[J]. Journal of Materials into light olefins over zirconium-doped indium( Ⅲ ) oxide and
Chemistry A, 2014, 2(42): 17828-17839. SAPO-34 bifunctional catalysts: Design of oxide component and
[36] ZHU Y Z, CHUAH G, JAENICKE S. Al-free Zr-zeolite beta as a construction of reaction network[J]. ChemCatChem, 2018, 10(7):
regioselective catalyst in the meerwein-ponndorf-verley reaction[J]. 1536-1541.