Page 182 - 《精细化工》2022年第9期
P. 182

·1900·                            精细化工   FINE CHEMICALS                                 第 39 卷

            低的优点。然后与三氟甲磺酸甲酯室温下反应得到                             [11]  ELWAIE T A, ABBAS S E, ALY E I, et al. HER2 kinase-targeted
            4,5-二氢-4,4-二甲基-2-(甲硫基)唑三氟甲磺酸盐                         breast cancer therapy: Design, synthesis, and  in vitro and  in vivo
                                                                   evaluation of novel lapatinib congeners as selective and potent HER2
            (ⅩⅩ),两步反应收率 68.6%。                                     inhibitors with favorable metabolic stability[J]. Journal of Medicinal
                      4
                (4)N -[3-甲基-4-([1,2,4]三唑并[1,5-a]吡啶-7-              Chemistry, 2020, 63(24): 15906-15945.
                                                               [12]  CHEN N, HUANG Z Y, XU J X, et al. Thorpe-ingold effect in the
            氧基)苯基]-4,6-喹唑啉二胺和 4,5-二氢-4,4-二甲基-
                                                                   reaction of vicinal amino primary alcohol hydrogen sulfates and
            2-(甲硫基)唑三氟甲磺酸盐在 DMF 中,以三乙胺                            carbon disulfide[J]. Tetrahedron, 2011, 67(41): 7971-7976.
            为碱反应得到妥卡替尼,收率 62.8%,HPLC 纯度                        [13]  YIN L F (尹灵峰), MAO Y J (茆勇军), ZHAO Z W (赵智伟), et al.
                                                                   Preparation method  of irbinitinib and  intermediate: CN109942576[P].
            99.08%。                                                2019-06-28.
                                                               [14]  VERMA S, KUMAR N, JAIN,  S L. Copper( Ⅱ )  trans-bis-
            参考文献:                                                  (glycinato): An efficient heterogeneous catalyst for cross coupling of
            [1]   LEE A. Tucatinib: First approval[J]. Drugs, 2020, 80(10): 1033- 1038.   phenols with aryl halides[J].  Tetrahedron Letters, 2012, 53(35):
            [2]   SHAH M, WEDAM S, CHENG J,  et al. FDA approval  summary:   4665-4668.
                 Tucatinib for the treatment of patients with advanced or  metastatic   [15] CHENG Y J(成宜娟), SUN L P(孙丽萍). Research progress towards
                 HER2-positive breast cancer[J]. Clinical Cancer Research, 2021,   copper-catalyzed coupling reactions for C—N bonds and C—O
                 27(5): 1220-1226.                                 bonds[J]. Chinese  Journal  of Organic Chemistry(有机化学), 2013,
            [3]   FARES J, KANOJIA D,  RASHIDI A,  et al.  Landscape of   33(5): 877-890.
                 combination therapy trials in breast cancer brain metastasis[J].   [16]  MA D W, ZHANG Y D, YAO J C, et al. Accelerating effect induced
                 Cancer, 2020, 147(7): 1939-1952.                  by the structure of  α-amino acid in the copper-catalyzed coupling
            [4]   MURTHY R K,  LOI S, OKINES A,  et al. Tucatinib, trastuzumab,   reaction of aryl halides with  α-amino acids. Synthesis of
                 and capecitabine for HER2-positive metastatic breast cancer[J]. New   benzolactam-V8[J]. Journal of the American Chemical Society, 1998,
                 England Journal of Medicine, 2020, 382(7): 597-609.   120(48): 12459-12467.
            [5]   LYSSIKATOS J P, MARMSATER F P, ZHAO Q, et  al. ErbB   [17]  ZHANG H H, AN Y L, ZHAO S Y, et al. An improved procedure for
                 inhibitors: WO2007059257[P]. 2007-05-24.          the preparation of apraclonidine hydrochloride[J]. Organic
            [6]   YIN L, MAO Y  J, LIU Y  W,  et al. New synthetic route to   Preparations and Procedures International, 2016, 48(5): 401-404.
                 tucatinib[J]. Synthesis, 2019, 51(13): 2660-2664.   [18]  ZHANG Z X (张竹霞), LYU R W (吕荣文), ZHANG K K (张珂珂),
            [7]   ZHANG T J (张天军), GAO J L (高军龙). New synthetic process of   et al. Reduction of aromatic nitro  compounds with  hydrazine
                 tucatinib[J]. Shandong Chemical Industry (山东化工), 2020, 49(5):   hydrate[J]. Fine Chemicals (精细化工), 2001, 18(4): 239-242.
                 25-28.                                        [19]  TEWARI N, NAIR D, NIZAR H, et al. An improved process for the
            [8]   GRAY N S, JANG J C, JANNE P,  et al. Cyano quinoline amide   preparation of 4,4-dimethyloxazolidine-2-thione[J]. Organic Process
                 compounds as HER2 inhibitors and methods of use: WO2019241715[P].     Research & Development, 2007, 11(3): 466-467.
                 2019-12-19.                                   [20]  DELAUNAY D,  TOUPET L, CORRE M L,  et al. Reactivity  of
            [9]   ZHANG H (张海), ZHONG Q (钟强), LIU Z W (刘志威),  et al.   β-amino alcohols with carbon disulfide study on the synthesis of
                 Preparation method of tucatinib: CN112159404[P]. 2020-10-16.   2-oxazolidinethiones and 2-thiazolidinethiones[J]. Journal of Organic
            [10]  AYOTHIRAMAN  R, BANDARU D, PARANTHAMAN R,  et al.   Chemistry, 1995, 60(20): 6604-6607.
                 T3P-mediated N—N cyclization for the synthesis of 1,2,4-triazolo[1,5-   [21]  WU Y K, YANG Y Q, HU Q. A facile access to chiral 4-isopropyl-,
                 a]pyridines[J]. Organic Process Research & Development, 2019,   4-benzyl-, and 4-phenyloxazolidine-2-thione[J]. Journal of Organic
                 23(11): 2510-2515.                                Chemistry, 2004, 69(11): 3990-3992.


            (上接第 1880 页)                                           Chemical Communications, 2003, (21): 2734-2735.
                                                               [37]  PANIAGUA M, MORALES G, MELERO J A, et al. Understanding
            [31]  YANG M, TIAN P, WANG C, et al. A top-down approach to prepare
                 silicoaluminophosphate molecular sieve nanocrystals with improved   the role of Al/Zr ratio in Zr-Al-Beta zeolite: Towards the one-pot
                 catalytic activity[J]. Chemical Communications, 2014, 50(15): 1845-   production of GVL from glucose[J]. Catalysis Today,  2021, 367:
                 1847.                                             228-238.
            [32]  XIN M D (忻睦迪), XING E H (邢恩会), OUYANG Y (欧阳颖), et   [38]  HUANG Y X, MA H F, XU Z Q, et al. Role of nanosized sheet-like
                 al. Influence of status of Zn species in Zn/ZSM-5  on its catalytic   SAPO-34 in bifunctional catalyst for  syngas-to-olefins  reaction[J].
                 performance[J]. Petroleum Processing and Petrochemicals (石油炼  Fuel, 2020, 273: 117771.
                 制与化工), 2019, 50(12): 42-50.                   [39]  HUANG Y X, MA H F, XU Z Q, et al. Utilization of SAPO-18 or
            [33]  LONG H  Y, JIN F Y,  XIONG G, et  al. Effect of lanthanum and   SAPO-35 in the bifunctional catalyst for the direct conversion of
                 phosphorus on the aromatization activity of Zn/ZSM-5 in FCC   syngas to light  olefins[J]. RSC Advances, 2021, 11(23): 13876-
                 gasoline upgrading[J]. Microporous and Mesoporous Materials, 2014,   13884.
                 198: 29-34.                                   [40]  SU J J, LIU C, LIU S L, et al. High conversion of syngas to ethene
            [34]  YAO J H, RONG Y Z, GAO Z Y, et al. Metal-organic framework-   and propene on bifunctional catalysts  via the tailoring  of SAPO
                 assisted synthesis of Zr-modified SAPO-34 zeolites with hierarchical   zeolite structure[J]. Cell Reports Physical Science, 2021, 2(1): 100290.
                 porous structure for the catalytic transformation of methanol to   [41]  WANG S, WANG P F, SHI D Z, et al. Direct conversion of syngas
                 olefins[J]. Catalysis Science & Technology, 2022, 12: 894-905.   into light  olefins with low CO 2 emission[J]. ACS Catalysis, 2020,
            [35]  SUN Q M, MA Y H, WANG N, et al. High performance nanosheet-   10(3): 2046-2059.
                 like silicoaluminophosphate molecular sieves: Synthesis, 3D  EDT   [42]  SU J J, WANG D, WANG Y D, et al. Direct conversion of syngas
                 structural analysis and MTO catalytic studies[J]. Journal of Materials   into light olefins over zirconium-doped indium( Ⅲ ) oxide and
                 Chemistry A, 2014, 2(42): 17828-17839.            SAPO-34 bifunctional catalysts: Design  of oxide component and
            [36]  ZHU  Y  Z, CHUAH G, JAENICKE S. Al-free Zr-zeolite beta as a   construction of reaction network[J]. ChemCatChem, 2018, 10(7):
                 regioselective catalyst in the meerwein-ponndorf-verley reaction[J].   1536-1541.
   177   178   179   180   181   182   183   184   185   186   187