Page 100 - 《精细化工)》2023年第10期
P. 100

·2178·                            精细化工   FINE CHEMICALS                                 第 40 卷

            5   结束语与展望                                             NiZr-based structured catalysts for ethylene production through ODH
                                                                   of ethane: Catalytic performance enhancement[J]. Catalysis Today,
                                                                   2016, 273: 252-258.
                 能源安全和气候变化促进了社会和公众对可持                          [6]   DUAN Z  K (段正康), ZHANG X P  (张新平), CHENG  N (程娜),
            续发展的思考与探索,CO 2 不仅是温室气体,更是                              et al. Recent progresses in catalytic dehydrogenation over layered
                                                                   double hydroxides[J]. Fine Chemicals (精细化工), 2022, 39(1): 7-16.
            重要的 C1 资源,将其转化为高附加值化学品,不                           [7]   CHU B Z, AN H, NIJHUIS T A, et al. A self-redox pure-phase M1
            仅可以减少直接排放入大气的 CO 2 ,而且能够在一                             MoVNbTeO/CeO 2  nanocomposite as a highly active catalyst for
                                                                   oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2015,
            定程度上摆脱能源化工行业对化石资源的依赖,具
                                                                   329: 471-478.
            有更大的减排潜力。“十四五”是碳达峰的关键期、                            [8]   BISWAS A N, XIE Z, CHEN J  G. Can CO 2-assisted alkane
            窗口期,资源化利用乙烷和 CO 2 制备高附加值的乙                             dehydrogenation lead to negative CO 2 emissions[J]. Joule, 2022,
                                                                   6(2): 269-273.
            烯为碳资源有效利用、重要化工产品生产以及环境                             [9]   ELBADAWI A H, BA-SHAMMAKH M S, AL-GHAMDI S, et al. A
            保护等提供了新的发展思路。CO 2 -ODHE 反应体系                           fluidizable VO/γ-Al 2O 3-ZrO 2 catalyst for the ODH of ethane to
                                                                   ethylene operating in a gas phase  oxygen free environment[J].
            较复杂,且普遍存在催化剂活性不高,稳定性不够、                                Chemical Engineering Science, 2016, 145: 59-70.
            再生性能有待提高等问题。因此,开发具有高活性、                            [10]  YUSUF S, NEAL L, HARIBAL V, et al. Manganese silicate based
                                                                   redox catalysts for greener ethylene production via chemical looping-
            高选择性及高稳定性的催化剂至关重要。                                     oxidative dehydrogenation of ethane[J]. Applied Catalysis B:
                 本文综述了 CO 2 -ODHE 反应中的催化剂及类                        Environmental, 2018, 232: 77-85.
                                                               [11]  YUSUF S, NEAL  L  M, LI F. Effect  of promoters on manganese-
            型,结合反应机制,从表面物理化学结构、C—C 和
                                                                   containing mixed  metal oxides for  oxidative dehydrogenation of
            C—H 键选择剪裁的角度分析了影响反应性能的关                                ethane  via  a cyclic redox scheme[J]. ACS Catalysis, 2017, 7(8):
                                                                   5163-5673.
            键因素和问题。乙烷和 CO 2 的转化率以及乙烯的选
                                                               [12]  GAO Y F, NEAL L, DING D, et al. Recent advances in intensified
            择性强烈依赖于催化剂的组成和结构,而高效催化                                 ethylene production-A review[J].  ACS  Catalysis, 2019, 9(9): 8592-
            剂的开发和研制关键在于对反应路径和表面催化的                                 8621.
                                                               [13]  ZENG L, CHENG Z, FAN J A, et al. Metal oxide redox chemistry
            深入理解。因此,可以利用原位表征手段和物理化                                 for chemical looping processes[J]. Nature Reviews Chemistry, 2018,
            学表征技术,结合理论结算和动力学模拟,研究表                                 2(11): 349-364.
                                                               [14]  MUKHERJEE D, PARK S E, REDDY B M. CO 2 as a soft oxidant
            面催化机理,有效控制反应路径,实现乙烷 C—H                                for oxidative dehydrogenation reaction: An  eco benign process for
            和 C—C 键的选择剪裁。基于上述讨论,未来可通                               industry[J]. Journal of CO 2 Utilization, 2016, 16: 301-312.
                                                               [15]  ANSARI M B, PARK S E. Carbon dioxide utilization as a soft
            过以下途径对催化剂进行调控:                                         oxidant and promoter in catalysis[J]. Energy  &  Environmental
                (1)C—H 键断裂、C—C 键断裂以及积炭反应                           Science, 2012, 5(11): 9419-9437.
            均为结构敏感反应,可以利用结构敏感度的差异来                             [16]  MYINT M,  YAN B,  WAN J,  et al. Reforming and oxidative
                                                                   dehydrogenation of ethane with CO 2 as a soft oxidant over bimetallic
            调节贵金属的配位数,如边、角、阶梯等位置,或                                 catalysts[J]. Journal of Catalysis, 2016, 343: 168-177.
            优化载体、掺杂等方式提高催化剂的稳定性以及选                             [17]  JEONG  M  H, SUN J, YOUNG H G,  et al. Successive  reduction-
                                                                   oxidation activity of FeO x/TiO 2 for  dehydrogenation  of ethane and
            择性。                                                    subsequent CO 2 activation[J]. Applied Catalysis B:  Environmental,
                (2)开发高效、稳定、价格低廉的金属氧化物                              2020, 270: 118887.
                                                               [18]  GAMBO Y, ADAMU S, TANIMU G, et al. CO 2-mediated oxidative
            催化剂替代贵金属催化剂,如调控金属氧化表面的                                 dehydrogenation of light alkanes to olefins: Advances  and
            酸碱性、氧化还原特性等。                                           perspectives in catalyst design and process improvement[J]. Applied
                                                                   Catalysis A: General, 2021, 623: 118273.
                (3)研制高效活化 CO 2 以及 C—H 键的双功能                    [19]  XIE Z H,  TIAN D, XIE M,  et al. Interfacial  active sites for CO 2
            催化剂,实现选择剪裁和氧化还原的合理匹配。                                  assisted selective cleavage of C—C/C—H bonds in ethane[J]. Chem,
                                                                   2020, 6(10): 2703-2716.
            参考文献:                                              [20]  ZHANG R H, WANG H, TANG S Y, et al. Photocatalytic oxidative
                                                                   dehydrogenation of ethane using CO 2 as a soft oxidant over Pd/TiO 2
            [1]   XIE Z H, XU Y G, XIE M, et al. Reactions of CO 2 and ethane enable   catalysts to C 2H 4 and syngas[J]. ACS Catalysis, 2018, 8(10): 9280-
                 CO bond insertion for production  of C3 oxygenates[J]. Nature   9286.
                 Communications, 2020, 11(1): 1887.            [21]  YAN B H, YAO S  Y, KATTEL S,  et al. Active sites for tandem
            [2]   LI Y C, LI L Y, SUN W J, et al. Porous silica coated ceria as a switch   reactions of CO 2 reduction and ethane dehydrogenation[J]. Proceedings
                 in tandem oxidative dehydrogenation  and dry reforming  of ethane   of the National Academy of Sciences, 2018, 115(33): 8278-8283.
                 with CO 2[J]. ChemCatChem, 2021, 13(15): 3501-3509.   [22]  KOIRALA R,  BUECHEL R, PRATSINIS  S E,  et al. Silica is
            [3]   SANCHIS R, DELGADO D,  AGOURAM S, et al. NiO diluted in   preferred over various single and mixed oxides as support for
                 high surface area TiO 2 as an efficient catalyst for the oxidative   CO 2-assisted cobalt-catalyzed oxidative dehydrogenation of ethane[J].
                 dehydrogenation of ethane[J]. Applied Catalysis A:  General, 2017,   Applied Catalysis A: General, 2016, 527: 96-108.
                 536: 18-26.                                   [23]  TÓTH A, HALASI G, SOLYMOSI F. Reactions of ethane with CO 2
            [4]   FAIRUZOV D, GERZELIEV I, MAXIMOV A,  et al. Catalytic   over supported Au[J]. Journal of Catalysis, 2015, 330: 1-5.
                 dehydrogenation of ethane:  A  mini review of recent advances  and   [24]  XIE Q, MIAO C  X, LEI  T Q,  et al. Dehydrogenation  of ethane
                 perspective of chemical looping technology[J]. Catalysts, 2021,   assisted by  CO 2 over  Y-doped ceria supported Au catalysts[J].
                 11(7): 833.                                       Reaction Kinetics, Mechanisms  and Catalysis, 2020, 132(1): 417-
            [5]   BORTOLOZZI J P, BANÚS E D, COURTALÓN N L, et al. Flexible   429.
   95   96   97   98   99   100   101   102   103   104   105