Page 170 - 《精细化工)》2023年第10期
P. 170

·2248·                            精细化工   FINE CHEMICALS                                 第 40 卷

            [14]  YU S W (禹淞文), ZHAO D X (赵大兴), ZHANG P X (张平喜),    liquid-based ultrasonic assisted extraction of pueraria flavones and its
                 et al. Ultrasonic assisted digestion of  flavanoid from lotus leaf[J].   antioxidant activity[J]. Food Research and Development (食品研究
                 Hunan Agricultural Sciences (湖南农业科学), 2017, 47(11): 73-75.   与开发), 2020, 41(20): 97-100, 107.
            [15]  LIU J B (刘军波), ZOU L G (邹礼根), ZHAO Y (赵芸),  et al.   [24]  JIA X L (贾晓丽), LIU G M (刘改梅), ZHAO S H (赵三虎). Study
                 Flavonoids extraction technology from lotus leaves[J]. Anhui   on the extraction of total flavonoids from seabuckthorn leaves using
                 Agricultural Science Bulletin (安徽农学通报), 2014, 20(1): 134-136.   imidazonium ionic liquids [J]. China Food Additives (中国食品添加
            [16]  ZHANG S B, YE J, CHEN C. Optimizing conditions for enzymatic   剂), 2020, 31(8): 1-8.
                 extraction of flavonoids from lotus leaves[J]. Food Science, 2012,   [25]  GAO J D (高建德), SONG K R (宋开蓉), ZHU X Y (朱晓玉), et al.
                 33(22): 149-153.                                  Extraction  optimization for  total flavonoids from compound  congrong
            [17]  LIU L L (刘磊磊), WANG Y C (王艺聪). Research progress in   granules and the antioxidant activity[J].  Chinese Traditional Patent
                 application of ionic liquid in extraction and separation of natural   Medicine (中成药), 2018, 40(7): 1496-1500.
                 products[J]. Chemistry and Industry of Forest Products (林产化学与  [26]  YANG G L (杨观兰), ZHONG C L (钟朝玲), ZHANG Q (张强), et al.
                 工业), 2019, 39(6): 1-12.                           Optimization  of extraction  of total flavonoids  from  Choerospondias
            [18] ZUO L (左琳), AO X Q (敖先权), GUO Y (郭妤). Application on   axillaris  leaves by response surface  methodology and analysis of
                 extraction of natural products by imidazolium ionic liquid[J]. Science   antioxidant activity[J]. Cereals & Oils (粮食与油脂), 2022, 35(9):
                 and Technology of Food Industry (食品工业科技), 2019, 40(23):   133-137.
                 324-330, 336.                                 [27]  XIONG J W (熊建文), XU J R (许金蓉), HE L Y (和丽媛), et al.
            [19]  LI M Y (李明英). Application frogress of ionic liquids in extraction   Genetic algorithm on optimizing extraction process of  Hylocereus
                 of natural active compounds[J]. Progress in Pharmaceutical Sciences   undatus polysaccharose and its antioxidant activity[J]. Journal of
                 (药学进展), 2015, 39(6): 437-445.                     Henan University of Technology: Natural Science Edition (河南工业
            [20]  WONG K, LI G, LI K, et al. Optimisation of Pueraria isoflavonoids   大学学报:  自然科学版), 2016, 37(3): 43-46.
                 by response surface methodology using ultrasonic-assisted extraction[J].   [28]  SAHATSAPAN N, ROJANARATA T, NAGAWHIRUNPAT T, et al.
                 Food Chemistry, 2017, 231: 231-237.               6-Maleimidohexanoic acid-grafted chitosan: A new generation
            [21]  GAO G Y (高国燕), JIANG L S (蒋林树), NIAN F (年芳), et al.   mucoadhesive polymer[J]. Carbohydrate Polymers, 2018, 202: 258-264.
                 Antioxidant activity  and the level of flavonoids in small fruit sea   [29]  CAI J Y (蔡锦源), WEI K H (韦坤华), XIONG J W (熊建文), et al.
                 buckthorn leaves from different provinces[J]. China Feed (中国饲  Extraction of flavonoids from Sophora tonkinensis Gapnep and their
                 料), 2022, 33(10): 30-35.                          antioxidant and antibacterial activities[J]. Fine Chemicals (精细化
            [22]  JIA X L (贾晓丽), XIAO J (肖江),  ZHAO X Y (赵鑫悦),  et al.   工), 2017, 34(3): 285-293.
                 Ultrasonic-assisted extraction of flavonoids from artemisia argyi by   [30]  ZHANG W (张薇), JIANG X (姜旬), WANG X T (王小婷).
                 phosphonium ionic liquid[J]. Chemical Reagents (化学试剂), 2020,   Extraction process optimization of flavonoid from pyracantha and its
                 42(10): 1226-1232.                                liqid antioxidant activity analysis[J]. Food and Nutrition in China (中
            [23]  SONG Y (宋岩), GUAN Y N (关桦楠), LIU B (刘博), et al. Ionic   国食物与营养), 2022, 28(7): 30-33, 57.




            (上接第 2230 页)                                           et al. Preparation of silicon  dioxide/epoxy resin/silicone rubber
                                                                   superhydrophobic  coating and its  performance study[J]. Plastics
                                                                   Industry (塑料工业), 2020, 48(11): 170-173.
            [16]  ZHANG X, SI Y F, MO J L, et al. Robust micro-nanoscale flowerlike   [26]  LYU X C (吕学超), LIU H (刘华),  DUAN S S (段沙沙),  et al.
                 ZnO/epoxy resin  superhydrophobic coating with rapid healing   Preparation and  study of modified epoxy resin superhydrophobic
                 ability[J]. Chemical Engineering Journal, 2017, 313: 1152-1159.   coatings[J]. Journal of Hebei  University (Natural Science Edition)
            [17]  KOTB Y, CAGNARD  A,  HOUSTON K R,  et al. What  makes   (河北大学学报:  自然科学版), 2019, 39(4): 386-394.
                 epoxy-phenolic coatings  on metals ubiquitous:  Surface energetics   [27]  ZHU  Z B, KANG S M,  CHEN  H,  et al. Construction  of
                 and molecular  adhesion characteristics[J]. Journal of Colloid and   superhydrophobic alkyl siloxane-modified carbon  nanotubes/epoxy
                 Interface Science, 2022, 608: 634-643.            coating[J]. Diamond and Related Materials, 2022, 129: 109351.
            [18]  KARAMI M  H,  KALAEE M, KHAJAVI R,  et al. Thermal   [28]  ZENG  Q, KANG L, FAN J,  et al. Durable superhydrophobic
                 degradation  kinetics of epoxy resin modified with elastomeric   silica/epoxy resin coating for the enhanced corrosion protection of
                 nanoparticles[J]. Advanced Composites and Hybrid Materials, 2022,   steel substrates in high salt and H 2S environments[J]. Colloids and
                 5(1): 390-401.                                    Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130137.
            [19]  MOUSAVI S R, ESTAJI S, PAYDAYESH A,  et al. A review of   [29]  ZHU W C (朱文澄), GUI X F (桂雪峰), LI Z H (李志华), et al.
                 recent progress in improving the fracture toughness of epoxy-based   Construction  of  PE-based  polysiloxane/modified  SiO 2
                 composites using carbonaceous nanofillers[J]. Polymer Composites,   superhydrophobic film[J]. Fine Chemicals (精细化工), 2021, 38(10):
                 2022, 43(4): 1871-1886.                           2050-2056, 2116.
            [20]  WAN T (万涛), WANG B (王博), HAN Q (韩庆), et al. Progress in   [30]  WANG L Y, HUI L F, SU W Y. Superhydrophobic modification of
                 the preparation technology and properties of nano-TiO 2 modified   nanocellulose based on an octadecylamine/dopamine system[J].
                 epoxy resin[J]. Surface Technology (表面技术), 2022, 51(7): 11-26,   Carbohydrate Polymers, 2022, 275: 118710.
                 62.                                           [31]  ZHANG  Z Q, YU D F, XU X B,  et bal. Versatile snail-inspired
            [21]  CHEN  Z H (陈子豪),  RUAN  Y B (阮英波), YANG  J  (杨杰).   superamphiphobic  coatings  with  repeatable  adhesion  and
                 Research progress on toughening methods and mechanisms of epoxy   recyclability[J]. Chemical Engineering Science, 2021, 230: 116182.
                 resins[J]. Thermosetting Resins (热固性树脂), 2022, 37(1): 64-69.   [32]  LIU M H, MAO  T Y, ZHANG Y  C,  et al. General water-based
            [22]  PENG J (彭军), DU Z K (杜柱康), ZHANG X W  (张习文).     strategy for the preparation of superhydrophobic coatings on smooth
                 Research progress of water-based technology and modification   substrates[J]. Industrial & Engineering Chemistry Research, 2017,
                 methods for epoxy resins[J]. New Chemical Materials (化工新型材  56(46): 13783-13790.
                 料), 2021, 49(10): 236-239.                    [33]  WEI R X (韦任轩), XUE C H (薛朝华). Preparation and properties
            [23]  ZHAO M Y (赵美云), KANG M  (康萌), HE Q (何钱), et al.   of wear-resistant superhydrophobic films  with porous structure[J].
                 Preparation of silicone rubber powder/epoxy resin superhydrophobic   Fine Chemicals (精细化工), 2021, 38(5): 914-919.
                 coating and  its application in anti-icing of  overhead conductors[J].   [34]  ZHAO T T, YU R, HUANG W, et al. Aliphatic silicone-epoxy based
                 China Surface Engineering (中国表面工程), 2022, 35(2): 235-242.   hybrid photopolymers applied in stereolithography 3D  printing[J].
            [24]  LI J (李杰), ZHANG Y (张阳), SHI W T (石文天), et al. Preparation   Polymers for Advanced Technologies, 2021, 32(3): 980-987.
                 of epoxy resin/SiO 2  nanoparticle composite superhydrophobic   [35]  XUE  C  H,  ZHAO L L, GUO X J,  et al. Mechanically durable
                 surfaces[J]. New Chemical Materials (化工新型材料), 2022, 50(4):   superhydrophobic surfaces by binding polystyene nanoparticles on
                 263-266.                                          fibers with aluminum phosphate followed by hydrophobization[J].
            [25]  ZHANG D H (张德虎), DENG J M (邓佳明), XUE S S (薛珊珊),   Chemical Engineering Journal, 2020, 396: 125231.
   165   166   167   168   169   170   171   172   173   174   175