Page 69 - 《精细化工)》2023年第10期
P. 69

第 10 期                   吴沁宇,等: COFs 结构在锂离子电池负极材料中的应用进展                                 ·2147·


                 reaction: Towards high-performance supercapacitor materials[J].   5366-5375.
                 Angewandte Chemie International Edition, 2020, 59(44): 19602-   [32]  WANG S,  WANG  Q Y, SHAO P P,  et al. Exfoliation of covalent
                 19609.                                            organic frameworks into few-layer redox-active nanosheets as cathode
            [14]  DING S Y, WANG W. Covalent organic frameworks (COFs): From   materials for lithium-ion batteries[J]. Journal of the American
                 design to applications[J]. Chemical Society Reviews, 2013, 42: 548-   Chemical Society, 2017, 139(12): 4258-4261.
                 568.                                          [33]  BAI L  Y, GAO Q, ZHAO Y L.  Two fully conjugated covalent
            [15]  ZHAO G F, XU  L F, JIANG J  W,  et al. COFs-based electrolyte   organic frameworks as anode  materials for lithium ion batteries[J].
                             +
                 accelerates the Na  diffusion and restrains dendrite growth in   Journal of Materials Chemistry A, 2016, 4(37): 14106-14110.
                 quasi-solid-state organic batteries[J]. Nano Energy, 2022, 92: 106756.   [34]  HALDER  A, GHOSH M, KHAYUM M  A,  et al. Interlayer
            [16]  EL-MAHDY A F M, HUNG Y H, MANSOURE T H, et al. Synthesis   hydrogen-bonded covalent organic frameworks as high-performance
                 of [3 + 3]  β-ketoenamine-tethered covalent organic frameworks   supercapacitors[J]. Journal of the American Chemical Society, 2018,
                 (COFs) for high-performance supercapacitance  and CO 2 storage[J].   140(35): 10941-10945.
                 Journal of the Taiwan Institute of Chemical Engineers, 2019, 103:   [35]  CHEN H, ZHANG Y D, XU C Y, et al. Two π-conjugated covalent
                 199-208.                                          organic frameworks with long-term cyclability at high current
            [17]  TIAN X  L,  CHEN S H,  ZHANG P,  et al. Covalent organic   density for lithium ion battery[J]. Chemistry, 2019, 25(68): 15472-
                 frameworks with immobilized anions to liberate lithium ions: Quasi-   15476.
                 solid electrolytes with enhanced rate capabilities[J]. Electrochimica   [36]  SEGURA J L, ROYUELA S, MAR R M. Post-synthetic modification
                 Acta, 2021, 389: 138585.                          of covalent organic frameworks[J]. Chemical Society Review, 2019,
            [18]  MIROSHNIKOV  M, DIVYA K P,  BABU G,  et al. Power from   48(14): 3903-3945.
                 nature: Designing green battery materials from electroactive quinone   [37]  ZHOU R, HUANG  Y, LI  Z H,  et al. Piperazine-based two-
                 derivatives and organic polymers[J]. Journal of Materials Chemistry   dimensional covalent organic framework for  high performance
                 A, 2016, 4(32): 12370-12386.                      anodic lithium storage[J]. Energy Storage Materials, 2021, 40: 124-
            [19]  LUO C, BORODIN O, JI X, et al. Azo compounds as a family of   138.
                 organic electrode materials for alkali-ion batteries[J]. Proceedings of   [38]  LI J, JING X C, LI Q Q, et al. Bulk COFs and COF nanosheets for
                 the National Academy of Sciences, 2018, 115(9): 2004-2009.   electrochemical energy storage and conversion[J]. Chemical Society
            [20]  PENG C X, NING G H, SU J, et al. Reversible multi-electron redox   Review, 2020, 49: 3565-3604.
                 chemistry of  π-conjugated N-containing heteroaromatic  molecule-   [39]  PENG Y W, HUANG Y, ZHU Y H, et al. Ultrathin two-dimensional
                 based organic cathodes[J]. Nature Energy, 2017, 2(7): 17074.   covalent organic framework nanosheets: Preparation and application
            [21]  HAN  X,  QING G, SUN J,  et al. How  many lithium ions can be   in highly sensitive and selective DNA detection[J]. Journal of the
                 inserted onto fused C 6 aromatic ring systems?[J]. Angewandte   American Chemical Society, 2017, 139(25): 8698-8704.
                 Chemie International Edition, 2012, 51(21): 5147-5151.   [40]  WU M M, ZHAO Y, ZHANG H  T,  et al. A 2D covalent organic
            [22]  LEI Z D, YANG  Q S, XU Y,  et al. Boosting lithium storage in   framework with ultra-large interlayer distance as high-rate  anode
                 covalent organic framework  via activation of 14-electron redox   material for lithium-ion batteries[J]. Nano Research, 2022, 15(11):
                 chemistry[J]. Nature Communications, 2018, 9(1): 576.   9779-9784.
            [23]  FANG L, CAO X R, CAO Z X. Covalent organic framework with   [41]  WANG W B, YANG Z H, ZHANG Y T, et al. Highly stable lithium
                 high capacity for the lithium ion battery anode: Insight  into   metal anode enabled by lithiophilic and spatial-confined spherical-
                 intercalation of Li from first-principles calculations[J]. Journal of   covalent organic framework[J]. Energy Storage Materials, 2022, 46:
                 Physics: Condensed Matter, 2019, 31(20): 205502.   374-383.
            [24]  CHEN X D, CI C G, SUN W W, et al. Long-life superlithiation of   [42]  XU Y, ZHOU Y, LI  T,  et al. Multifunctional covalent organic
                 few-layered  covalent organic nanosheets  via graphene quantum   frameworks  for high capacity and dendrite-free lithium  metal
                 dots/carbon nanotube stabilized three-dimensional architecture[J].   batteries[J]. Energy Storage Materials, 2020, 25: 334-341.
                                                                                                         –
                 Journal of Materials Chemistry A, 2022, 10(40): 21701-21715.   [43]  WEN Y C,  DING J Y, YANG Y,  et al. Introducing  NO 3 into
            [25]  FENG X, DING X S, JIANG D L. Covalent organic frameworks[J].   carbonate-based electrolytes  via covalent organic framework to
                 Chemical Society Reviews, 2012, 41(18): 6010-6022.   incubate stable interface for Li-metal batteries[J]. Advanced Functional
            [26]  WANG S T, DA L, HAO J S, et al. A fully conjugated 3D covalent   Materials, 2022, 32(15): 2109377.
                 organic framework exhibiting band-like transport with  ultrahigh   [44]  AI Q, FANG  Q  Y, LIANG J,  et al. Lithium-conducting  covalent-
                 electron mobility[J]. Angewandte Chemie, 2021, 133(17):  9407-   organic-frameworks as artificial solid-electrolyte-interphase on silicon
                 9411.                                             anode for  high performance lithium ion  batteries[J]. Nano Energy,
            [27]  ZHU J  H,  YANG J, XU Z X,  et al. Silicon anodes protected by a   2020, 72: 104657.
                 nitrogen-doped porous carbon shell for high-performance lithium-ion   [45]  GUI B, LIN G Q, DING H M,  et al. Three-dimensional  covalent
                 batteries[J]. Nanoscale, 2017, 9(25): 8871-8878.   organic frameworks: From topology design to applications[J].
            [28]  KIM M S, PHANG C S, JEONG Y K, et al. A facile synthetic route   Accounts of Chemical Research, 2020, 53(10): 2225-2234.
                 for the morphology-controlled formation of triazine-based covalent   [46]  LIU C Y, QIU Y, LIU Y L, et al. Novel 3D grid porous Li 4Ti 5O 12
                 organic nanosheets (CONs)[J]. Polymer Chemistry, 2017, 8(37):   thick electrodes fabricated by 3D printing  for high  performance
                 5655-5659.                                        lithium-ion batteries[J]. Journal of Advanced Ceramics, 2022, 11(2):
            [29]  LONG  Z W, SHI C, WU  C Q,  et al. Heterostructure Fe 2O 3   295-307.
                 nanorods@imine-based covalent organic framework for long cycling   [47]  LI Z, ZHOU H Y, ZHAO F L,  et al. Three-dimensional covalent
                 and high-rate lithium storage[J]. Nanoscale, 2022, 14(5): 1906-1920.   organic frameworks as host materials for lithium-sulfur batteries[J].
            [30]  YU X Q,  LI C Y, MA  Y  C,  et al.  Crystalline, porous, covalent   Chinese Journal of Polymer Science, 2020, 38(5): 550-557.
                 polyoxometalate-organic frameworks for lithium-ion batteries[J].   [48]  LI R J,  XING L D, CHEN A L,  et al. Covalent organic  polymer-
                 Microporous and Mesoporous Materials, 2020, 299: 110105.   derived carbon nanotube-twined carbon nanospheres for efficient
            [31]  YANG H, ZHANG S L, HAN L  H,  et al. High conductive two-   oxygen electroreduction and capacitance storage[J]. Ionics, 2020,
                 dimensional covalent organic framework for lithium storage with   26(2): 927-937.
                 large capacity[J]. ACS Applied Materials & Interfaces, 2016, 8(8):   [49]  KANG H W, LIU H L, LI C X, et al. Polyanthraquinone-triazine-a
   64   65   66   67   68   69   70   71   72   73   74