Page 69 - 《精细化工)》2023年第10期
P. 69
第 10 期 吴沁宇,等: COFs 结构在锂离子电池负极材料中的应用进展 ·2147·
reaction: Towards high-performance supercapacitor materials[J]. 5366-5375.
Angewandte Chemie International Edition, 2020, 59(44): 19602- [32] WANG S, WANG Q Y, SHAO P P, et al. Exfoliation of covalent
19609. organic frameworks into few-layer redox-active nanosheets as cathode
[14] DING S Y, WANG W. Covalent organic frameworks (COFs): From materials for lithium-ion batteries[J]. Journal of the American
design to applications[J]. Chemical Society Reviews, 2013, 42: 548- Chemical Society, 2017, 139(12): 4258-4261.
568. [33] BAI L Y, GAO Q, ZHAO Y L. Two fully conjugated covalent
[15] ZHAO G F, XU L F, JIANG J W, et al. COFs-based electrolyte organic frameworks as anode materials for lithium ion batteries[J].
+
accelerates the Na diffusion and restrains dendrite growth in Journal of Materials Chemistry A, 2016, 4(37): 14106-14110.
quasi-solid-state organic batteries[J]. Nano Energy, 2022, 92: 106756. [34] HALDER A, GHOSH M, KHAYUM M A, et al. Interlayer
[16] EL-MAHDY A F M, HUNG Y H, MANSOURE T H, et al. Synthesis hydrogen-bonded covalent organic frameworks as high-performance
of [3 + 3] β-ketoenamine-tethered covalent organic frameworks supercapacitors[J]. Journal of the American Chemical Society, 2018,
(COFs) for high-performance supercapacitance and CO 2 storage[J]. 140(35): 10941-10945.
Journal of the Taiwan Institute of Chemical Engineers, 2019, 103: [35] CHEN H, ZHANG Y D, XU C Y, et al. Two π-conjugated covalent
199-208. organic frameworks with long-term cyclability at high current
[17] TIAN X L, CHEN S H, ZHANG P, et al. Covalent organic density for lithium ion battery[J]. Chemistry, 2019, 25(68): 15472-
frameworks with immobilized anions to liberate lithium ions: Quasi- 15476.
solid electrolytes with enhanced rate capabilities[J]. Electrochimica [36] SEGURA J L, ROYUELA S, MAR R M. Post-synthetic modification
Acta, 2021, 389: 138585. of covalent organic frameworks[J]. Chemical Society Review, 2019,
[18] MIROSHNIKOV M, DIVYA K P, BABU G, et al. Power from 48(14): 3903-3945.
nature: Designing green battery materials from electroactive quinone [37] ZHOU R, HUANG Y, LI Z H, et al. Piperazine-based two-
derivatives and organic polymers[J]. Journal of Materials Chemistry dimensional covalent organic framework for high performance
A, 2016, 4(32): 12370-12386. anodic lithium storage[J]. Energy Storage Materials, 2021, 40: 124-
[19] LUO C, BORODIN O, JI X, et al. Azo compounds as a family of 138.
organic electrode materials for alkali-ion batteries[J]. Proceedings of [38] LI J, JING X C, LI Q Q, et al. Bulk COFs and COF nanosheets for
the National Academy of Sciences, 2018, 115(9): 2004-2009. electrochemical energy storage and conversion[J]. Chemical Society
[20] PENG C X, NING G H, SU J, et al. Reversible multi-electron redox Review, 2020, 49: 3565-3604.
chemistry of π-conjugated N-containing heteroaromatic molecule- [39] PENG Y W, HUANG Y, ZHU Y H, et al. Ultrathin two-dimensional
based organic cathodes[J]. Nature Energy, 2017, 2(7): 17074. covalent organic framework nanosheets: Preparation and application
[21] HAN X, QING G, SUN J, et al. How many lithium ions can be in highly sensitive and selective DNA detection[J]. Journal of the
inserted onto fused C 6 aromatic ring systems?[J]. Angewandte American Chemical Society, 2017, 139(25): 8698-8704.
Chemie International Edition, 2012, 51(21): 5147-5151. [40] WU M M, ZHAO Y, ZHANG H T, et al. A 2D covalent organic
[22] LEI Z D, YANG Q S, XU Y, et al. Boosting lithium storage in framework with ultra-large interlayer distance as high-rate anode
covalent organic framework via activation of 14-electron redox material for lithium-ion batteries[J]. Nano Research, 2022, 15(11):
chemistry[J]. Nature Communications, 2018, 9(1): 576. 9779-9784.
[23] FANG L, CAO X R, CAO Z X. Covalent organic framework with [41] WANG W B, YANG Z H, ZHANG Y T, et al. Highly stable lithium
high capacity for the lithium ion battery anode: Insight into metal anode enabled by lithiophilic and spatial-confined spherical-
intercalation of Li from first-principles calculations[J]. Journal of covalent organic framework[J]. Energy Storage Materials, 2022, 46:
Physics: Condensed Matter, 2019, 31(20): 205502. 374-383.
[24] CHEN X D, CI C G, SUN W W, et al. Long-life superlithiation of [42] XU Y, ZHOU Y, LI T, et al. Multifunctional covalent organic
few-layered covalent organic nanosheets via graphene quantum frameworks for high capacity and dendrite-free lithium metal
dots/carbon nanotube stabilized three-dimensional architecture[J]. batteries[J]. Energy Storage Materials, 2020, 25: 334-341.
–
Journal of Materials Chemistry A, 2022, 10(40): 21701-21715. [43] WEN Y C, DING J Y, YANG Y, et al. Introducing NO 3 into
[25] FENG X, DING X S, JIANG D L. Covalent organic frameworks[J]. carbonate-based electrolytes via covalent organic framework to
Chemical Society Reviews, 2012, 41(18): 6010-6022. incubate stable interface for Li-metal batteries[J]. Advanced Functional
[26] WANG S T, DA L, HAO J S, et al. A fully conjugated 3D covalent Materials, 2022, 32(15): 2109377.
organic framework exhibiting band-like transport with ultrahigh [44] AI Q, FANG Q Y, LIANG J, et al. Lithium-conducting covalent-
electron mobility[J]. Angewandte Chemie, 2021, 133(17): 9407- organic-frameworks as artificial solid-electrolyte-interphase on silicon
9411. anode for high performance lithium ion batteries[J]. Nano Energy,
[27] ZHU J H, YANG J, XU Z X, et al. Silicon anodes protected by a 2020, 72: 104657.
nitrogen-doped porous carbon shell for high-performance lithium-ion [45] GUI B, LIN G Q, DING H M, et al. Three-dimensional covalent
batteries[J]. Nanoscale, 2017, 9(25): 8871-8878. organic frameworks: From topology design to applications[J].
[28] KIM M S, PHANG C S, JEONG Y K, et al. A facile synthetic route Accounts of Chemical Research, 2020, 53(10): 2225-2234.
for the morphology-controlled formation of triazine-based covalent [46] LIU C Y, QIU Y, LIU Y L, et al. Novel 3D grid porous Li 4Ti 5O 12
organic nanosheets (CONs)[J]. Polymer Chemistry, 2017, 8(37): thick electrodes fabricated by 3D printing for high performance
5655-5659. lithium-ion batteries[J]. Journal of Advanced Ceramics, 2022, 11(2):
[29] LONG Z W, SHI C, WU C Q, et al. Heterostructure Fe 2O 3 295-307.
nanorods@imine-based covalent organic framework for long cycling [47] LI Z, ZHOU H Y, ZHAO F L, et al. Three-dimensional covalent
and high-rate lithium storage[J]. Nanoscale, 2022, 14(5): 1906-1920. organic frameworks as host materials for lithium-sulfur batteries[J].
[30] YU X Q, LI C Y, MA Y C, et al. Crystalline, porous, covalent Chinese Journal of Polymer Science, 2020, 38(5): 550-557.
polyoxometalate-organic frameworks for lithium-ion batteries[J]. [48] LI R J, XING L D, CHEN A L, et al. Covalent organic polymer-
Microporous and Mesoporous Materials, 2020, 299: 110105. derived carbon nanotube-twined carbon nanospheres for efficient
[31] YANG H, ZHANG S L, HAN L H, et al. High conductive two- oxygen electroreduction and capacitance storage[J]. Ionics, 2020,
dimensional covalent organic framework for lithium storage with 26(2): 927-937.
large capacity[J]. ACS Applied Materials & Interfaces, 2016, 8(8): [49] KANG H W, LIU H L, LI C X, et al. Polyanthraquinone-triazine-a