Page 70 - 《精细化工)》2023年第10期
P. 70

·2148·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 promising anode  material for high-energy lithium-ion  batteries[J].   Sources, 2022, 523: 231041.
                 ACS Applied Materials & Interfaces, 2018, 10(43): 37023-37030.   [67]  WANG H,  ZHAO  L, TANG X X,  et al. Functionalized graphene
            [50]  NI B, LI Y Q, CHEN T Q,  et al. Covalent organic frameworks   quantum dots modified dioxin-linked  covalent organic frameworks
                 converted N, B co-doped carbon spheres with excellent lithium-ion   for superior lithium storage[J]. Chemistry A European Journal, 2022,
                 storage performance at high current density[J]. Journal of Colloid   28(12): 202103901.
                 and Interface Science, 2019, 542: 213-221.    [68]  WANG H, SHAO Y, MEI S L, et al. Polymer-derived heteroatom-
            [51]  CHEN K X, HUANG R, GU F L, et al. A novel hollow Co 3O 4@N-   doped porous carbon materials[J]. Chemical Reviews, 2020, 120(17):
                 doped carbon nanobubble film composite for high-performance   9363-9419.
                 anode of  lithium-ion batteries[J]. Composites Part B: Engineering,   [69]  CASTRO-MUÑIZ A, HOSHIKAWA Y, KASUKABE T, et al. Real
                 2021, 224: 109247.                                understanding of the nitrogen-doping effect on the electrochemical
            [52]  ZHU Q, WANG X, CLOWES R, et al. 3D cage COFs: A dynamic   performance of carbon materials by using carbon-coated mesoporous
                 three-dimensional covalent organic framework with high-connectivity   silica as a model material[J]. Langmuir, 2016, 32(8): 2127-2135.
                 organic cage nodes[J]. Journal  of  the  American Chemical Society,   [70]  HUANG X Z, BI X Y,  TANG  T Y,  et al. The  electrochemical
                 2020, 142(39): 16842-16848.                       performance enhancement of carbon anode by hybrid  from battery
            [53]  ZHAO J J, ZHOU M M, CHEN J,  et al. Phthalocyanine-based   and capacitor through nitrogen doping[J]. Ionics, 2021, 27(4): 1393-
                                                                   1401.
                 covalent organic frameworks as novel anode materials  for high-
                                                               [71]  WU Z S,  REN  W, XU L,  et al. Doped graphene sheets as  anode
                 performance lithium-ion/sodium-ion batteries[J]. Chemical Engineering
                                                                   materials with superhigh rate and large capacity for lithium ion
                 Journal, 2021, 425: 131630.
                                                                   batteries[J]. ACS Nano, 2011, 5(7): 5463-5471.
            [54]  DUONG P  H H, SHIN Y K,  KUEHL V A, et  al. Molecular
                                                               [72]  ZHANG X J, ZHU G, WANG M, et al. Covalent-organic-frameworks
                 interactions and layer stacking dictate covalent organic framework
                                                                   derived N-doped porous carbon materials as anode for superior
                 effective pore size[J]. ACS Applied  Materials & Interfaces, 2021,
                                                                   long-life cycling lithium and sodium ion batteries[J]. Carbon, 2017,
                 13(35): 42164-42175.
            [55]  ZHANG  C, WU  B H, MA M  Q,  et al. Ultrathin metal/covalent-   116: 686-694.
                 organic framework membranes towards  ultimate separation[J].   [73]  XU L R, ZHOU X, TIAN W Q, et al. Surface-confined single-layer
                 Chemical Society Reviews, 2019, 48(14): 3811-3841.   covalent organic framework on single-layer graphene grown on
            [56]  LEI Z D,  CHEN X D, SUN W W,  et al. Exfoliated triazine-based   copper  foil[J].  Angewandte Chemie International Edition,  2014,
                                                                   53(36): 9564-9568.
                 covalent organic nanosheets with multielectron redox  for high-
                 performance lithium organic batteries[J]. Advanced Energy Materials,   [74]  SUN L J, WANG  H L, ZHAI S L,  et al. Edge-on-plane-confined
                 2019, 9(3): 1801010.                              covalent organic frameworks enable a defect- and nitrogen-rich
            [57]  ZHANG H, SUN W W, CHEN X D, et al. Few-layered fluorinated   carbon matrix for high-rate lithium-ion storage[J]. ACS Applied
                 triazine-based covalent organic nanosheets for high-performance   Energy Materials, 2021, 4(6): 5957-5962.
                                                               [75]  TANG X X (汤旭旭), YANG Q S (杨秦斯),YANG J W (杨建伟),
                 alkali organic batteries[J]. ACS Nano, 2019, 13(12): 14252-14261.
            [58]  CHEN X D, LI Y S, WANG L, et al. High-lithium-affinity chemically   et al. Composite of covalent  organic  framework-derived  nitrogen-
                 exfoliated 2D covalent organic frameworks[J]. Advanced Materials,   doped carbon with carbon nanotubes for lithium-storage[J]. Journal
                 2019, 31(29): 1901640.                            of Shanghai University(Natural Science Edition) (上海大学学报:  自
            [59]  HALDAR S, ROY K, KUSHWAHA R, et al. Chemical exfoliation as   然科学版), 2020, 26(6): 972-979.
                                                               [76]  TANG  T, LI X J, FENG Z H,  et al. A needle-like cobalt-based
                 a controlled route  to enhance the anodic performance of COF in
                 LIB[J]. Advanced Energy Materials, 2019, 9(48): 1902428.   bifunctional catalyst supported on carbon materials for  effective
            [60]  HALDAR S, ROY K, NANDI S, et al. High and reversible lithium   overall water splitting[J]. Nanotechnology, 2021, 33(6): 065704.
                 ion storage in self-exfoliated triazole-triformyl phloroglucinol-based   [77]  HU S, RIBEIRO E, DAVARI S A, et al. Hybrid nanocomposites of
                 covalent organic nanosheets[J]. Advanced Energy Materials, 2018,   nanostructured Co 3O 4 interfaced with reduced/nitrogen-doped graphene
                                                                   oxides for selective improvements in electrocatalytic and/or
                 8(8): 1702170.
            [61]  ZHU Y Z, CHEN X F, CAO Y Q, et al. Reversible intercalation and   supercapacitive properties[J]. RSC Advances, 2017, 7(53): 33166-33176.
                 exfoliation of layered covalent triazine frameworks for enhanced   [78]  ZHUANG G L, GAO  Y F, ZHOU  X,  et al. ZIF-67/COF-derived
                 lithium ion storage[J]. Chemical Communications, 2019, 55(10):   highly dispersed  Co 3O 4/N-doped  porous carbon with excellent
                 1434-1437.                                        performance for oxygen evolution reaction and Li-ion batteries[J].
            [62]  KOU Y, XU Y H, GUO Z Q, et al. Supercapacitive energy storage   Chemical Engineering Journal, 2017, 330: 1255-1264.
                 and electric power supply using an aza-fused π-conjugated microporous   [79]  YASIN G,  ARIF  M, MA J,  et al.  Self-templating synthesis of
                 framework[J]. Angewandte Chemie  International Edition, 2011,   heteroatom-doped large-scalable carbon anodes for high-performance
                 50(37): 8753-8757.                                lithium-ion batteries[J]. Inorganic Chemistry Frontiers,  2022, 9(6):
            [63]  ZUO H  Y, GUO Y, ZHAO W J,  et al.  Controlled fabrication of   1058-1069.
                 silica@covalent triazine polymer  core-shell spheres as a reversed-   [80]  YING Y D, REN J T, LIU Y P, et al. Facile synthesis of nitrogen,
                 phase/hydrophilic interaction mixed-mode chromatographic stationary   phosphorus and sulfur tri-doped carbon nanosheets as efficient
                 phase[J]. ACS Applied Materials Interfaces, 2019, 11(49): 46149-   oxygen electrocatalyst for rechargeable Zn-air batteries[J]. Materials
                 46156.                                            Science and Engineering: B, 2021, 273: 115439.
            [64]  PARK J, LEE C W, PARK J H, et al. Capacitive organic anode based   [81]  ZHANG Y M,  GAO Z Q.  High  performance anode material for
                 on fluorinated-contorted hexabenzocoronene: Applicable to lithium-   sodium-ion batteries derived  from covalent-organic frameworks[J].
                 ion and sodium-ion storage cells[J]. Advance Science, 2018, 5(12):   Electrochimica Acta, 2019, 310: 23-28.
                 1801365.                                      [82]  GU F L, CHEN K X, DU Y, et al. CeO 2-NiO/N,O-rich porous carbon
            [65]  TONG  Y F, WANG X H, ZHANG  Y,  et al. Recent advances of   derived from covalent-organic framework for enhanced Li-storage[J].
                 covalent organic frameworks in lithium ion batteries[J]. Inorganic   Chemical Engineering Journal, 2022, 442: 136298.
                 Chemistry Frontiers, 2021, 8(3): 558-571.     [83]  CHEN  K X, GU  F L, XIONG J Y,  et al. NiO/nitrogen-oxygen
            [66]  JIANG F, WANG Y J, QIU T P, et al. Synthesis of biphenyl-linked   co-doped carbon nanoflower composites based on covalent organic
                 covalent triazine frameworks with excellent lithium storage   frameworks for lithium-ion battery anodes[J]. Journal of Alloys and
                 performance as anode in lithium ion battery[J]. Journal of Power   Compounds, 2022, 924: 166524.
   65   66   67   68   69   70   71   72   73   74   75