Page 162 - 《精细化工》2023年第12期
P. 162
·2704· 精细化工 FINE CHEMICALS 第 40 卷
recoverable homogeneous catalyst for the transesterification of Industrial & Engineering Chemistry Research, 2003, 42(4): 663-674.
dimethyl carbonate with ethanol[J]. Reaction Kinetics and Catalysis [19] PRETSCH E, BUHLMANN P, BADERTSCHER M. Structure
Letters, 2009, 96(1): 27-33. determination of organic compounds tables of spectra data[M].
[8] WANG H X (王红星), LI H Y (李海勇), ZHANG X (张希), et al. RONG G B (荣国斌), Translation. Beijing: Science Press (科学出版
Reaction kinetics of trans-esterification between dimethyl carbonate 社), 2013: 269-335.
and ethanol[J]. Journal of Chemical Engineering of Chinese [20] WENG S F (翁诗甫), XU Y Z (徐怡庄). Interpretation of FTIR
Universities (高校化学工程学报), 2014(3): 580-585. Spctra[M]. Beijing: Chemical Industry Press (化学工业出版社),
[9] DENG W J, SHI L, YAO J, et al. A review on transesterification of 2016: 287-450.
propylene carbonate and methanol for dimethyl carbonate synthesis[J]. [21] NING Y C (宁永成). Interpretation of organic spectra[M]. Beijing:
Carbon Resources Conversion, 2019, 2(3): 198-212. Science Press (科学出版社), 2010: 1-43.
[10] YU Y, SHI L, GUO J J, et al. In-depth understanding of soluble base [22] KAMBER N E, JEONG W, WAYMOUTH R M, et al. Organocatalytic
deactivation during the carbonate transesterification process[J]. Fuel, ring-opening polymerization[J]. Chemical Reviews, 2007, 107(12):
2021, 285: 119201. 5813-5840.
[11] YAO J (姚洁), WANG G Y (王公应). Study on catalysts in [23] CROCELLA V, CERRATO G, MAGNACCA G, et al. Adsorption of
transesterification of dimethyl carbonate and ethanol to diethyl acetone on nonporous and mesoporous silica[J]. Journal of Physical
carbonate[J]. Chemical Engineering of Oil & Gas (石油与天然气化 Chemistry C, 2009, 113(37): 16517-16529.
工), 2003, 32(5): 267-268, 259. [24] CROCELLÀ V, TABANELLI T, VITILLO J G, et al. A multi-
[12] QI H (亓虎), XUE B (薛冰), XU J (许杰), et al. Ionic liquids as technique approach to disclose the reaction mechanism of dimethyl
efficient catalysts for the synthesis of ethyl methyl carbonate via carbonate synthesis over amino-modified SBA-15 catalysts[J].
transesterification of dimethyl carbonate and ethanol[J]. Industry Applied Catalysis B: Environmental, 2017, 211: 323-336.
Catalysis (工业催化), 2013, 21(2): 58-62. [25] LYNCH D E, REEVES C R. Statistical analysis of the effect of a
[13] LIU J (刘菊), SHI L (石磊), CHEN F (陈飞), et al. Thermostable single OH hydrogen-bonding interaction on carbonyl bond
strong alkalinity ionic liquid using for synthesis of dimethyl lengths[J]. Journal of Molecular Structure, 2019, 1180: 158-162.
carbonate[J]. Fine Chemicals (精细化工), 2020, 37(7): 1438-1446. [26] KASHID S M, BAGCHI S. Experimental determination of the
[14] ZHANG D W, JARDEL D, PERUCH F, et al. Azaphosphatranes as electrostatic nature of carbonyl hydrogen-bonding interactions using
hydrogen-bonding organocatalysts for the activation of carbonyl IR-NMR correlations[J]. Journal of Physical Chemistry Letters,
groups: Investigation of lactide ring-opening polymerization[J]. 2014, 5(18): 3211-3215.
European Journal of Organic Chemistry, 2016, (8): 1619-1624. [27] UNNIKRISHNAN P, SRINIVAS D. Highly active and reusable
[15] JARDEL D, DAVIES C, PERUCH F, et al. Protonated phosphazenes: ternary oxide catalyst for dialkyl carbonates synthesis[J]. Journal of
Structures and hydrogen-bonding organocatalysts for carbonyl bond Molecular Catalysis A: Chemical, 2015, 398: 42-49.
activation[J]. Advanced Synthesis and Catalysis, 2016, 358(7): [28] KELLER T, HOLTBRUEGGE J, NIESBACH A, et al.
1110-1118. Transesterification of dimethyl carbonate with ethanol to form ethyl
[16] OSAKI M, TAKASHIMA Y, YAMAGUCHI H, et al. Switching of methyl carbonate and diethyl carbonate: A comprehensive study on
polymerization activity of cinnamoyl-alpha-cyclodextrin[J]. Organic chemical equilibrium and reaction kinetics[J]. Industrial & Engineering
& Biomolecular Chemistry, 2009, 7(8): 1646-1651. Chemistry Research, 2011, 50(19): 11073-11086.
[17] SAMUILOV A Y, SAMUILOV Y D. Theoretical study of [29] MEI F M, CHEN E X, LI G X. Effective and recoverable homogeneous
transesterification of diethyl carbonate with methanol catalyzed by catalysts for the transesterification of dimethyl carbonate with
base and Lewis acid[J]. Theoretical Chemistry Accounts, 2019, 138(2): 24. ethanol: Lanthanide triflates[J]. Kinetics and Catalysis, 2009, 50(5):
[18] CLEMENTS J H. Reactive application of cyclic alkylene carbonates[J]. 666-670.
(上接第 2695 页) Science & Technology, 2017, 7(16): 3637-3646.
[10] SERRA M, SALAGRE P, CESTEROS Y, et al. Evolution of several [17] FENG P, HUANG K, XU Q, et al. Ni supported on the CaO
Ni and Ni–MgO catalysts during the hydrogenation reaction of modified attapulgite as catalysts for hydrogen production from
adiponitrile[J]. Applied Catalysis A General, 2004, 272(1):353-362. glycerol steam reforming[J]. International Journal of Hydrogen
[11] LIU S H (刘四化). Study on the process of hydrogenation of Energy, 2020, 45(15): 8223-8233.
adiponitrile and nitrocyclohexane[D]. Xiangtan: Xiangtan University [18] YU W C (于伟臣), LI S J (李少杰), LUO J J (罗靖洁), et al.
(湘潭大学), 2015. Ni-based catalysts for basic-free hydrogenation of adiponitrile to
[12] ALINI S, BOTTINO A, CAPANNELLI G, et al. Preparation ADN 1,6-hexamethylenediamine: A comparative study on synthesis
characterisation of Rh/Al 2O 3 catalysts and their application in the method [J]. Molecular Catalysis (分子催化), 2021, 35(3): 252-262.
adiponitrile partial hydrogenation ADN styrene hydroformylation[J]. [19] ZHANG C X, LUO J J, ZHOU Y N, et al. Metal oxide sub-nanoclusters
Applied Catalysis A General, 2005, 292: 105-112. decorated Ni catalyst for selective hydrogenation of adiponitrile to
[13] CHATTERJEE M, SATO M, KAWANAMI H, et al. An efficient hexamethylenediamine[J]. Journal of Catalysis, 2019, 381: 14-25.
hydrogenation of dinitrile to aminonitrile in supercritical carbon [20] ASHOK J, KATHIRASER Y, ANG M L, et al. Bi-functional
dioxide[J]. Advanced Synthesis & Catalysis, 2010, 352(14/15): 2394- hydrotalcite-derived NiO-CaO-Al 2O 3 catalysts for steam reforming
2398. of biomass and/or tar model compound at low steam-to-carbon
[14] LYU J K (吕金昆). Preparation of supported nickel and skeletal conditions[J]. Applied Catalysis B Environmental, 2015, 172/173:
ruthenium catalysts for the transformation of biomass-derived levulinic 116-128.
acid[D]. Dalian: Dalian University of Technology (大连理工大学), 2018. [21] HUYNH H L, ZHU J, ZHANG G H, et al. Promoting effect of Fe on
[15] LIU D N (刘东妮), GUO F (郭方), RONG Z M (荣泽明), et al. supported Ni catalysts in CO 2 methanation by in situ DRIFTS and
Selective catalytic hydrogenation of styrene-isoprene-styrene block DFT study[J]. Journal of Catalysis, 2020, 392: 266-277.
copolymer[J]. Fine Chemicals (精细化工), 2021, 38(6): 1183-1191. [22] DENG Q Y (邓芹英), LIU L (刘岚), DENG H M (邓慧敏), et al.
[16] PUTRO W S, KOJIMA T, HARA T, et al. Selective hydrogenation of Spectral analysis tutorial[M]. Beijing: Beijing Science Press (北京科
unsaturated carbonyls by Ni-Fe-based alloy catalysts[J]. Catalysis 学出版社), 2007.