Page 21 - 《精细化工》2023年第2期
P. 21

第 2 期                      李红伟,等:  燃料电池中铁基氧还原催化剂的研究进展                                    ·243·


                 bifunctional catalyst for oxygen reduction and evolution reactions[J].   and oxygen reduction reaction of Bi 0.5Sr 0.5FeO 3–δ-based cathode
                 Journal of Materials Chemistry A, 2016, 4(48): 18723-18729.   catalysts Bi 0.5Sr 0.5FeO 3–δ[D]. Harbin: Heilongjiang University (黑龙
            [18]  DENG Y J, TIAN X L, SHEN G H, et al. Coupling hollow Fe 3O 4   江大学), 2021.
                 nanoparticles with oxygen vacancy  on mesoporous carbon as a   [34] LYU  C  (吕晨), LUO L H (罗凌虹), WU  Y F (吴也凡),  et al.
                 high-efficiency ORR electrocatalyst for Zn-air battery[J]. Journal of   Preparation and characterization  of  SOFC Nano-La 0.6Sr 0.4Co 0.4Fe 0.6O 3
                 Colloid and Interface Science, 2020, 567: 410-418.   cathode powder[J]. Chinese Pottery (中国陶瓷), 2013, 49(8): 13-16.
            [19]  WANG Y, WU M M, WANG K, et al. Fe 3O 4@N doped interconnected   [35] WANG  L  (王林). Preparation and electrochemical properties of
                 hierarchical porous carbon and its 3D integrated electrode for oxygen   Sc-doped La 0.6Sr 0.4Co 0.2Fe 0.8O 3–δ cathode materials[D]. Baotou: Inner
                 reduction in acidic media[J]. Advanced Science, 2020, 7(14): 2000407.   Mongolia University of Science and Technology (内蒙古科技大学),
            [20]  WANG T L, SUN C X, YAN Y, et al. Understanding the active sites   2020.
                 of Fe-N-C materials and their properties in the ORR catalysis   [36]  WANG L (王林), WU K (吴可),  WANG C Y (王成业),  et al.
                 system[J]. RSC Advances, 2022, 12(16): 9543-9549.   Preparation of manganese ferrite activated carbon cathode catalyst
            [21]  YANG S T, LIU X L, NIU F Q,  et al. 2D  Single-atom Fe-N-C   and its effect on  electricity generation in microbial fuel cells[J].
                 catalyst derived from a layered complex  as  an  oxygen  reduction   Chinese Environmental Science (中国环境科学), 2022, 42(6): 2638-
                 catalyst for PEMFCs[J]. ACS Applied Energy Materials, 2022, 5(7):   2646.
                 8791-8799.                                    [37]  XU Y H (徐永辉), XIAO B H (肖宝华), FENG Y Y (冯艳艳), et al.
            [22]  AO X, ZHANG W, ZHAO B,  et al. Atomically dispersed Fe-N-C   Progress in research on carbon dioxide capture materials[J]. Fine
                 decorated with Pt-alloy core-shell nanoparticles for improved activity   Chemicals (精细化工) 2021, 38(8): 1513-1521.
                 and durability towards oxygen reduction[J]. Energy & Environmental   [38]  HE X F, LONG X Y, WANG P, et al. Interconnected 3D Fe 3O 4/rGO
                 Science, 2020, 13(9): 3032-3040.                  as highly durable electrocatalyst for  oxygen reduction reaction[J].
            [23]  KOYUTURK B, FARBER  E M, WAGNER F E, et  al. A  simple   Journal of Alloys and Compounds, 2021, 855: 157422.
                 decagram-scale synthesis  of an atomically dispersed, hierarchically   [39]  WANG P, ZHAO Y, ZHOU  K W,  et al. High electrocatalytic
                 porous Fe-N-C catalyst for acidic ORR[J]. Journal of  Materials   performance of Fe 3C-encapsulated N-doped carbon nanotubes and
                 Chemistry A, 2022, 10(37): 19859-19867.           nanosheets for oxygen reduction reaction[J]. Materials Research
            [24]  ZHANG Y, QIAN L, ZHAO W,  et al. Highly efficient Fe-NC   Bulletin, 2022, 149: 111719.
                 nanoparticles modified porous graphene composites for oxygen   [40]  SHE Y Y, LIU J, WANG H K, et al. Bubble-like Fe-encapsulated
                 reduction reaction[J]. Journal of the Electrochemical Society, 2018,   N,S-codoped carbon nanofibers as efficient  bifunctional oxygen
                 165(9): H510.                                     electrocatalysts for robust Zn-air batteries[J]. Nano Research, 2020,
            [25]  HU J, ZHANG C X, SUN M Z, et al. Ultrastable bimetallic Fe 2Mo   13(8): 2175-2182.
                 for efficient oxygen reduction reaction in pH-universal applications[J].   [41]  SHI J, LIN N, LIN H B, et al. A N-doped rice husk-based porous
                 Nano Research, 2022: 1-8.                         carbon as an  electrocatalyst for the oxygen reduction reaction[J].
            [26]  AO X,  ZHANG  W, LI Z S,  et al. Markedly enhanced oxygen   New Carbon Materials, 2020, 35(4): 401-409.
                 reduction activity of single-atom Fe catalysts via integration with Fe   [42]  KWAK D H, HAN S B, LEE Y W, et al. Fe/N/S-doped mesoporous
                 nanoclusters[J]. ACS Nano, 2019, 13(10): 11853-11862.   carbon nanostructures as electrocatalysts for  oxygen  reduction
            [27]  HAN A L, WANG X J, TANG K, et al. An adjacent atomic platinum   reaction in acid medium[J]. Applied  Catalysis B: Environmental,
                 site enables single-atom iron with  high oxygen reduction reaction   2017, 203: 889-898.
                 performance[J]. Angewandte Chemie  International Edition, 2021,   [43]  CHAI L L, HU Z Y, WANG X, et al. Fe 7C 3 nanoparticles with in
                 60(35): 19262-19271.                              situ grown CNT on nitrogen doped hollow carbon cube with greatly
            [28]  GUO B  B, JU  Q  J, MA R,  et al. Mechanochemical synthesis of   enhanced conductivity and ORR performance for alkaline fuel
                 multi-site electrocatalysts as bifunctional zinc-air battery electrodes[J].   cell[J]. Carbon, 2021, 174: 531-539.
                 Journal of Materials Chemistry A, 2019, 7(33): 19355-19363.   [44]  LIU J J, GONG Z C, ALLEN C, et al. Edge-hosted Fe-N 3 sites on a
            [29]  HUANG S Q,  QIAO Z L, SUN P  P,  et al. The strain induced   multiscale porous carbon framework combining high intrinsic activity
                 synergistic catalysis of FeN 4 and MnN 3 dual-site catalysts for oxygen   with efficient mass transport for oxygen reduction[J]. Chem Catalysis,
                 reduction in proton-/anion-exchange membrane fuel cells[J]. Applied   2021, 1(6): 1291-1307.
                 Catalysis B: Environmental, 2022, 317: 121770.   [45]  LI X H, YANG X X, LIU L T, et al. Chemical vapor deposition for
            [30]  KARUPPANNAN  M, JI E P, BAE  H E,  et al. A nitrogen and   N/S-doped single Fe site catalysts for the oxygen reduction in direct
                 fluorine enriched Fe/Fe 3C@C oxygen reduction reaction electrocatalyst   methanol fuel cells[J]. ACS Catalysis, 2021, 11(12): 7450-7459.
                 for anion/proton exchange membrane fuel cells[J]. Nanoscale, 2020,   [46]  MENG R W, ZHANG C, LU Z Y, et al. An oxygenophilic atomic
                 12(4): 2542-2554.                                 dispersed Fe-N-C catalyst for lean-oxygen seawater batteries[J]. Advanced
            [31]  SONG A L, CAO L, YANG W, et al. Uniform multilayer graphene-   Energy Materials, 2021, 11(23): 2100683.
                 coated iron and iron-carbide as oxygen reduction catalyst[J]. ACS   [47]  TRAN T N, SHIN C H, LEE B J, et al. Fe-N-functionalized carbon
                 Sustainable Chemistry & Engineering, 2018, 6(4): 4890-4898.   electrocatalyst derived from a  zeolitic imidazolate framework for
            [32]  YU Q, LIAN S T, LI J T, et al. FeN x and γ-Fe 2O 3 co-functionalized   oxygen reduction: Fe and NH 3 treatment effects[J]. Catalysis Science
                 hollow graphitic carbon nanofibers for efficient oxygen reduction in   & Technology, 2018, 8(20): 5368-5381.
                 an alkaline medium[J]. Journal of  Materials Chemistry A, 2020,   [48]  WU Y L (吴胤龙). Study on performance and stability mechanism of
                 8(12): 6076-6082.                                 FeNC oxygen reduction catalyst in proton exchange membrane fuel
            [33]  GUO M M (郭苗苗). High-temperature electrochemical performance   cell[D]. Guangzhou: Jinan University (暨南大学), 2021.
   16   17   18   19   20   21   22   23   24   25   26