Page 199 - 《精细化工》2023年第6期
P. 199
第 6 期 宋 林,等: 裸藻蛋白泡沫分离的工艺优化及功能特性分析 ·1349·
温度和稀释倍数。同时对裸藻蛋白的功能特性进行 operational method of continuous foam separation of gold-injection
of metal and/or surfactant solutions into rising foam bed[J].
了考察,又采用 FTIR、UV-Vis 光谱和 Peakfit Version Separation and Purification Technology, 2006, 52(2): 357-362.
分析了蛋白的结构,并测定了裸藻蛋白的氨基酸组 [15] SUZUKI Y, IMAFUKU Y, NISHIYAMA M, et al. A highly efficient
method for concentrating DNA from river water by combined
成。结果表明,裸藻蛋白泡沫分离的最佳条件为 coagulation and foam separation[J]. Separation Science and Technology,
pH=5.5、装液量 300 mL、温度 30 ℃、稀释倍数 15 2019, 54(18): 3128-3134.
[16] SHAO W Y, ZHANG J Y, WANG K, et al. Cocamidopropyl betaine-
倍,此时回收率和富集比为 94.27%和 4.18。裸藻蛋 assisted foam separation of freshwater Microalgae desmodesmus
白在 60 ℃时持水量最大,为 7.27 g/g,在 40 ℃时 brasiliensis[J]. Biochemical Engineering Journal, 2018, 140: 38-46.
[17] YU X D (于小栋), ZHANG W (张炜), LIU L (刘龙), et al. Optimization
持油量最大,为 14.74 g/g。裸藻蛋白的乳化能力、 of separation of gelatin solution using response surface
乳化稳定性、起泡性、泡沫稳定性大体上均随着裸 methodology[J]. Chemical World (化学世界), 2018, 59(7): 412-419.
[18] YAZDAN-BAKHSH M, NASR-ESFAHANI M, ESMAEILZADEH-
藻蛋白质量分数的增大呈先增加后减小的趋势。 KENARI R, et al. Optimizing nanoencapsulation of heracleum
FTIR 和 UV-Vis 吸收光谱显示,裸藻蛋白有典型的 lasiopetalum by response surface methodology[J]. Journal of the
American Oil Chemists' Society, 2022, 99(5): 421-431.
蛋白峰,其二级结构代表裸藻蛋白以 β-折叠为主。 [19] JEONG G T, PARK E S, WAHLIG V L, et al. Effect of pH on the
蛋 白中必 需氨 基酸含 量和 疏水氨 基酸 含量 为 foam fractionation of Mimosa pudica L. seed proteins[J]. Industrial
& Engineering Chemistry Research, 2004, 43(2): 422-427.
35.28%和 50.80%。说明泡沫分离是一种可行且操 [20] LIU L (刘龙), ZHANG W (张炜), CHEN Y T (陈元涛), et al.
作简便的方法,本文为裸藻的研究开发提供了实验 Optimization on foam separation process for Spinachleaf protein[J].
Food & Machinery (食品与机械), 2017, 33(6): 169-175.
依据。 [21] LIU H B, ZHANG W, CHEN Y T, et al. Optimization of foam
separation of mulberry leaf protein by response surface methodology[J].
参考文献: Food Science, 2015, 36(8): 97-102.
[22] WANG Z J (王志娟), ZHANG W (张炜), GAN W M (甘文梅), et al.
[1] LI Y, TANG X L, SONG W S, et al. Biosynthesis of silver Foam fractionation optimization and antioxidant activity studies of
nanoparticles using Euglena gracilis, Euglena intermedia and their dioscin from Trigonella foenum-graecum[J]. Journal of the Chinese
extract[J]. IET Nanobiotechnology, 2015, 9(1): 19-26. Cereals and Oils Association ( 中国粮油学报 ), 2021, 36(11):
[2] O'NEILL E C, KUHAUDOMLARP S, REJZEK M, et al. Exploring 144-150, 161.
the glycans of Euglena gracilis[J]. Biology, 2017, 6(4): 45-59. [23] GUO J J (郭京京), LI Y X (李雅轩), FAN Z Y (樊子怡), et al.
[3] CHEN Z F, ZHU J Y, DU M, et al. A synthetic biology perspective Extraction technology optimization of dietary fiber from Hippophae
on the bioengineering tools for an industrial microalga: Euglena rhamnoides pomace by response surface methodology and the
gracilis[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1-7. evaluation of its application properties[J]. Natural Product Research
[4] KHATIWADA B, SUNNA A, NEVALAINEN H. Molecular tools and and Development (天然产物研究与开发), 2022, 34(7): 1181-1188.
applications of Euglena gracilis: From biorefineries to bioremediation[J]. [24] SUI C B (隋成博), ZHANG W (张炜), NIE S C (乜世成), et al.
Biotechnology and Bioengineering, 2020, 117(12): 3952-3967. Optimization and function characteristics analysis of foam fractionation of
[5] DURNFORD D G, SCHWARTZBACH S D. Protein targeting to the Quinoa protein[J]. Fine Chemicals ( 精细化工 ), 2022, 39(11):
plastid of Euglena[J]. Euglena: Biochemistry, Cell and Molecular 2312-2320.
Biology, 2017, 979: 183-205. [25] CHEN M J, LIN C W. Factors affecting the water-holding capacity of
[6] PANJA S, GHATE N B, MANDAL N. A microalga, Euglena tuba fibrinogen/plasma protein gels optimized by response surface
induces apoptosis and suppresses metastasis in human lung and methodology[J]. Journal of Food Science, 2010, 67(7): 2579-2582.
breast carcinoma cells through ROS-mediated regulation of [26] ASSADPOUR E, JAFARI S M, MAHOONAK A S, et al. Evaluation
MAPKs[J]. Cancer Cell International, 2016, 16(1): 1-13. of protein solubility and water and oil holding capacity of the legume
[7] IVANOVA I M, NEPOGODIEV S A, SAALBACH G, et al. Fluorescent flours[J]. Iranian Food Science & Technology Research Journal,
mannosides serve as acceptor substrates for glycosyltransferase and 2010, 6(3): 184-192.
sugar-1-phosphate transferase activities in euglena gracilis membranes[J]. [27] LI Y (李艳), LI X T (李啸天), GUO W Y (郭文渊), et al. Analysis of
Carbohydrate Research, 2017, 438: 26-28. amino acid composition, structure and emulsion properties of
[8] AEMIRO A, KIIRU P, WATANABE S, et al. The effect of euglena Coconut cake protein fractions[J]. Chinese Journal of Tropical Crops
(Euglena gracilis) supplementation on nutrient intake, digestibility, (热带作物学报), 2022, 43(3): 644-652.
nitrogen balance and rumen fermentation in sheep[J]. Animal Feed [28] ZHANG Y P (张燕鹏), ZHANG M J (张曼君), DIAO Y C (刁云春),
Science and Technology, 2017, 225: 123-133. et al. Foaming characteristics and underlying mechanism of rice bran
[9] NAGAO R, YOKONO M, KATO K H, et al. High-light modification protein-ovalbumin mixtures[J]. Food Science (食品科学), 2022,
of excitation-energy-relaxation processes in the green flagellate 43(12): 81-86.
Euglena gracilis[J]. Photosynthesis Research, 2021, 149(3): 303-311. [29] ZHANG J X, SHARMAN E, JIANG J. Two-dimensional ultraviolet
[10] NIE S C (乜世成), ZHANG W (张炜), GAO H (高红), et al. Effect spectroscopy of proteins[J]. Science China Chemistry, 2018, 61(9):
of ultra-high pressure micro-jet technology extraction on structure 1099-1109.
and antioxidant activity of β-glucan from Euglena gracilis[J]. Fine [30] LIU Y Q (刘彦秋), DU R M (都日玛), BAI Y (白杨), et al. Effect of
Chemicals (精细化工), 2022, 39(8): 1633-1640, 1661. ultra-high pressure treatment on tertiary structure of sheep bone
[11] LIU L (刘龙). Foam separation of whey protein, preparation of collagen[J]. Journal of Chinese Institute of Food Science and
antioxidant products and improvement of functional properties[D]. Technology (中国食品学报), 2022, 22(8): 207-213.
Xining: Qinghai Normal University (青海师范大学), 2018. [31] LAN W Q (蓝蔚青), HU X Y (胡潇予), RUAN D N (阮东娜), et al.
[12] SHAO W Y, ZHANG J Y, LIN Y, et al. The selection of a surfactant Effects of carrageenan oligosaccharides on the protein structure of
for freshwater Microalgae harvesting and separation by the foam Litopenaeus vannamei by Fourier transform infrared and micro-raman
separation method[J]. Bioprocess and Biosystems Engineering, 2019, spectroscopy[J]. Spectroscopy and Spectral Analysis (光谱学与光谱
42(11): 1721-1730. 分析), 2019, 39(8): 2507-2514.
[13] MATSUOKA K, MIURA H, KARIMA S, et al. Removal of alkali [32] LIU J (刘晶), HU X (胡晓), YANG X Q (杨贤庆), et al. Extraction
metal ions from aqueous solution by foam separation method[J]. and antioxidant activity of enzymolysis products of Gracilaria
Journal of Molecular Liquids, 2018, 263: 89-95. lemaneiformis protein[J]. Acta Agriculturae Zhejiangensis (浙江农业
[14] KINOSHITA T, ISHIGAKI Y, YAMAGUCHI K, et al. Novel 学报), 2022, 34(5): 1061-1072.