Page 171 - 《精细化工》2023年第9期
P. 171

第 9 期                           杨慧宇,等:  单分散聚乙二醇的高效合成                                    ·2019·


                 Pharmaceutical Sciences, 2022, 111(2): 293-297.   细化工), 2021, 38(4): 729-735.
            [5]   PINTO M, SILVA V, BARREIRO S, et al. Brain drug delivery and   [16]  HERZBERGER J, NIEDERER K N, POHLIT H, et al. Polymerization
                 neurodegenerative diseases: Polymeric PLGA-based nanoparticles as   of ethylene oxide, propylene oxide, and  other alkylene oxides:
                 a forefront platform[J]. Ageing Research Reviews, 2022, 79: 101658.   Synthesis, novel polymer architectures, and bioconjugation[J]. Chemical
            [6]   KO J H, MAYNARD H D. A guide to maximizing the therapeutic   Reviews, 2016, 116(6): 2170-2243.
                 potential of protein-polymer conjugates by rational design[J]. Chemical   [17]  DENG T, MAO X L, XIAO Y, et al. Monodisperse oligoethylene glycols
                 Society Reviews, 2018, 47(24): 8998-9014.         modified camptothecin, 10-hydroxycamptothecin and SN38 prodrugs[J].
            [7]   XIAO Q, DRAPER S R E, SMITH M S,  et al. Influence of   Bioorganic & Medicinal Chemistry Letters, 2019, 29(4): 581-584.
                 PEGylation on the strength  of  protein  surface salt bridges[J]. ACS   [18]  YU Z Q, BO S W, WANG H Y, et al. Application of monodisperse
                 Chemical Biology, 2019, 14(7): 1652-1659.         PEGs in pharmaceutics: Monodisperse polidocanols[J]. Molecular
            [8]   ROTHER M, NUSSBAUMER M G,  RENGGLI K,  et al. Protein   Pharmaceutics, 2017, 14(10): 3473-3479.
                 cages and synthetic polymers: A fruitful symbiosis for drug delivery   [19]  WAWRO  A M,  MURAOKA T, KATO M,  et al. Multigram
                 applications, bionanotechnology and materials science[J]. Chemical   chromatography-free synthesis of octa(ethylene glycol) p-toluenesulfonate
                 Society Reviews, 2016, 45(22): 6213-6249.         [J]. Organic Chemistry Frontiers, 2016, 3(11): 1524-1534.
            [9]   WANG Y F, HU W, DING B M, et al. cRGD mediated redox and pH   [20]  KHANAL A, FANG S Y. Solid phase stepwise synthesis of
                 dual responsive poly(amidoamine) dendrimer-poly(ethylene glycol)   polyethylene glycols[J]. Chemistry, 2017, 23(60): 15133-15142.
                 conjugates for efficiently intracellular antitumor drug delivery[J].   [21]  MIKESELL L, ERIYAGAMA D N A M, YIN Y, et al. Stepwise PEG
                 Colloids and Surfaces B: Biointerfaces, 2020, 194: 111195.   synthesis featuring deprotection and coupling in one pot[J]. Beilstein
            [10]  THI  T  T H, PILKINGTON E  H,  NGUYEN D H,  et al. The   Journal of Organic Chemistry, 2021, 17: 2976-2982.
                 importance of poly(ethylene glycol) alternatives for overcoming PEG   [22]  ZHANG H,  LI X  F, SHI Q Y,  et al. Highly efficient synthesis  of
                 immunogenicity in drug delivery and bioconjugation[J]. Polymers,   monodisperse poly(ethylene glycols) and derivatives through
                 2020, 12(2): 298.                                 macrocyclization of oligo(ethylene glycols)[J]. Angewandte Chemie-
            [11]  LI Y, GAO J F, WANG S P,  et al. Self-assembled NIR- Ⅱ   International Editon, 2015, 54(12): 3763-3767.
                 fluorophores with ultralong blood circulation for cancer imaging and   [23]  LI Y,  QIU X L,  JIANG Z  X. Macrocyclic sulfates as versatile
                 image-guided surgery[J]. Journal  of Medicinal Chemistry, 2022,   building  blocks  in the synthesis  of monodisperse poly(ethylene
                 65(3): 2078-2090.                                 glycol)s and monofunctionalized derivatives[J]. Organic Process
            [12]  KOLATE A, BARADIA D,  PATIL  S,  et al. PEG-A versatile   Research & Development, 2015, 19(7): 800-805.
                 conjugating ligand for drugs and drug delivery systems[J]. Journal of   [24]  XIA G Q, LI Y, YANG Z G, et al. Development of a scalable process
                 Controlled Release: Official Journal of the Controlled Release   for  α-amino-ω-methoxyl-dodecaethylene glycol[J]. Organic Process
                 Society, 2014, 192: 67-81.                        Research & Development, 2015, 19(11): 1769-1773.
            [13]  PIPE S W, MONTGOMERY R  R, PRATT K P,  et al.  Life in the   [25]  WAN Z H, LI Y, BO S W,  et al. Amide bond-containing
                 shadow of a dominant partner: The FⅧ-VWF association and its   monodisperse polyethylene glycols beyond 10000 Da[J]. Organic &
                 clinical implications for hemophilia A[J]. Blood, 2016, 128(16):   Biomolecular Chemistry, 2016, 14(33): 7912-7919.
                 2007-2016.                                    [26]  LYU X Y, ZHENG X,  YANG Z  G,  et al. One-pot synthesis of
            [14]  DING M L, LIU W B, GREF R. Nanoscale MOFs: From synthesis to   monodisperse dual-functionalized polyethylene glycols through
                 drug delivery and theranostics applications[J]. Advanced Drug Delivery   macrocyclic sulfates[J]. Organic & Biomolecular Chemistry, 2018,
                 Reviews, 2022, 190: 114496.                       16(44): 8537-8545.
            [15]  YAN D M (鄢冬茂), CAI W R (蔡文蓉), YIN G Q (殷国强), et al.   [27]  LI  Y, WANG X M, CHEN  Y P,  et al. Monodisperse polyethylene
                 Preparation and properties of PEG/APS-SiO 2/O-CNTs phase change   glycol "brushes" with enhanced lipophilicity, and thermo and plasma
                 materials with enhanced thermal conductivity[J]. Fine Chemicals (精  stability[J]. Chemical Communications, 2019, 55(13): 1895-1898.




            (上接第 2012 页)                                           hydrogenation of  CO  and CO 2 to lower olefins with bifunctional
                                                                   catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis,
            [9]   SU J J, WANG D, WANG Y D, et al. Direct conversion of syngas   2020, 10(15): 8303-8314
                 into light  olefin over zirconium-doped indium( Ⅲ ) oxide  and   [14]  LIU S S, DING Q D, GUO T, et al. Research progress on molding
                 SAPO-34 bifunctional catalysts: Design  of oxide component and   process of catalysts for fixed bed reactor[J]. The Chinese Journal of
                 construction of reaction network[J]. ChemCatChem, 2018, 10(7):   Process Engineering (过程工程学报), 2023, 23(4): 501-511.
                 1536-1541.                                    [15]  TIAN S (田帅). Synthesis and morphology characterization of
            [10]  HUANG W D (黄伟东), ZHENG H P (郑和平), GUO Y J (郭玉静),   indium oxide (In 2O 3) crystals[D]. Baoding: Hebei University (河北
                 et al. Bifunctional catalyst for conversion of syngas to light olefins   大学), 2009.
                 with low CO 2 selectivity[J]. Fine Chemicals (精细化工), 2022,   [16]  LIU N, JIAO F, PAN X L, et al. Size effects of ZnO nanoparticles in
                 39(10): 2092-2098.                                bifunctional catalysts for selective syngas conversion[J]. American
            [11]  NI  Y M,  LIU  Y, CHEN Z  Y,  et al.  Realizing and  recognizing   Chemical Society Catalysis, 2019, 9(2): 960-966.
                 syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis,   [17]  TAN L, YANG G H, YONEYAMA  Y,  et al. Iso-butanol  direct
                 2019, 9(2): 1026-1032.                            synthesis from syngas over the alkali  metals  modified Cr/ZnO
            [12]  JIAO W Q, SU J J, ZHOU  H B, et al. Dual template synthesis of   catalysts[J]. Applied Catalysis A: General, 2015, 505: 141-149.
                 SAPO-18/34 zeolite intergrowths and their performances in direct   [18]  WANG Q J (王前进), SHANG  Y S (尚蕴山), XU D P (许德平),
                 conversion of syngas to olefins[J]. Microporous and Mesoporous   et al. Research progress in OX-ZEO catalysts for  single-step
                 Materials, 2020, 306: 1-9.                        synthesis of light olefins from syngas[J]. Natural Gas  Chemical
            [13]  LIU X L,  WANG M  H,  YIN H R,  et al.  Tandem catalysis for   Industry (天然气化工-C1 化学与化工), 2020, 45(5): 121-127, 134.
   166   167   168   169   170   171   172   173   174   175   176