Page 171 - 《精细化工》2023年第9期
P. 171
第 9 期 杨慧宇,等: 单分散聚乙二醇的高效合成 ·2019·
Pharmaceutical Sciences, 2022, 111(2): 293-297. 细化工), 2021, 38(4): 729-735.
[5] PINTO M, SILVA V, BARREIRO S, et al. Brain drug delivery and [16] HERZBERGER J, NIEDERER K N, POHLIT H, et al. Polymerization
neurodegenerative diseases: Polymeric PLGA-based nanoparticles as of ethylene oxide, propylene oxide, and other alkylene oxides:
a forefront platform[J]. Ageing Research Reviews, 2022, 79: 101658. Synthesis, novel polymer architectures, and bioconjugation[J]. Chemical
[6] KO J H, MAYNARD H D. A guide to maximizing the therapeutic Reviews, 2016, 116(6): 2170-2243.
potential of protein-polymer conjugates by rational design[J]. Chemical [17] DENG T, MAO X L, XIAO Y, et al. Monodisperse oligoethylene glycols
Society Reviews, 2018, 47(24): 8998-9014. modified camptothecin, 10-hydroxycamptothecin and SN38 prodrugs[J].
[7] XIAO Q, DRAPER S R E, SMITH M S, et al. Influence of Bioorganic & Medicinal Chemistry Letters, 2019, 29(4): 581-584.
PEGylation on the strength of protein surface salt bridges[J]. ACS [18] YU Z Q, BO S W, WANG H Y, et al. Application of monodisperse
Chemical Biology, 2019, 14(7): 1652-1659. PEGs in pharmaceutics: Monodisperse polidocanols[J]. Molecular
[8] ROTHER M, NUSSBAUMER M G, RENGGLI K, et al. Protein Pharmaceutics, 2017, 14(10): 3473-3479.
cages and synthetic polymers: A fruitful symbiosis for drug delivery [19] WAWRO A M, MURAOKA T, KATO M, et al. Multigram
applications, bionanotechnology and materials science[J]. Chemical chromatography-free synthesis of octa(ethylene glycol) p-toluenesulfonate
Society Reviews, 2016, 45(22): 6213-6249. [J]. Organic Chemistry Frontiers, 2016, 3(11): 1524-1534.
[9] WANG Y F, HU W, DING B M, et al. cRGD mediated redox and pH [20] KHANAL A, FANG S Y. Solid phase stepwise synthesis of
dual responsive poly(amidoamine) dendrimer-poly(ethylene glycol) polyethylene glycols[J]. Chemistry, 2017, 23(60): 15133-15142.
conjugates for efficiently intracellular antitumor drug delivery[J]. [21] MIKESELL L, ERIYAGAMA D N A M, YIN Y, et al. Stepwise PEG
Colloids and Surfaces B: Biointerfaces, 2020, 194: 111195. synthesis featuring deprotection and coupling in one pot[J]. Beilstein
[10] THI T T H, PILKINGTON E H, NGUYEN D H, et al. The Journal of Organic Chemistry, 2021, 17: 2976-2982.
importance of poly(ethylene glycol) alternatives for overcoming PEG [22] ZHANG H, LI X F, SHI Q Y, et al. Highly efficient synthesis of
immunogenicity in drug delivery and bioconjugation[J]. Polymers, monodisperse poly(ethylene glycols) and derivatives through
2020, 12(2): 298. macrocyclization of oligo(ethylene glycols)[J]. Angewandte Chemie-
[11] LI Y, GAO J F, WANG S P, et al. Self-assembled NIR- Ⅱ International Editon, 2015, 54(12): 3763-3767.
fluorophores with ultralong blood circulation for cancer imaging and [23] LI Y, QIU X L, JIANG Z X. Macrocyclic sulfates as versatile
image-guided surgery[J]. Journal of Medicinal Chemistry, 2022, building blocks in the synthesis of monodisperse poly(ethylene
65(3): 2078-2090. glycol)s and monofunctionalized derivatives[J]. Organic Process
[12] KOLATE A, BARADIA D, PATIL S, et al. PEG-A versatile Research & Development, 2015, 19(7): 800-805.
conjugating ligand for drugs and drug delivery systems[J]. Journal of [24] XIA G Q, LI Y, YANG Z G, et al. Development of a scalable process
Controlled Release: Official Journal of the Controlled Release for α-amino-ω-methoxyl-dodecaethylene glycol[J]. Organic Process
Society, 2014, 192: 67-81. Research & Development, 2015, 19(11): 1769-1773.
[13] PIPE S W, MONTGOMERY R R, PRATT K P, et al. Life in the [25] WAN Z H, LI Y, BO S W, et al. Amide bond-containing
shadow of a dominant partner: The FⅧ-VWF association and its monodisperse polyethylene glycols beyond 10000 Da[J]. Organic &
clinical implications for hemophilia A[J]. Blood, 2016, 128(16): Biomolecular Chemistry, 2016, 14(33): 7912-7919.
2007-2016. [26] LYU X Y, ZHENG X, YANG Z G, et al. One-pot synthesis of
[14] DING M L, LIU W B, GREF R. Nanoscale MOFs: From synthesis to monodisperse dual-functionalized polyethylene glycols through
drug delivery and theranostics applications[J]. Advanced Drug Delivery macrocyclic sulfates[J]. Organic & Biomolecular Chemistry, 2018,
Reviews, 2022, 190: 114496. 16(44): 8537-8545.
[15] YAN D M (鄢冬茂), CAI W R (蔡文蓉), YIN G Q (殷国强), et al. [27] LI Y, WANG X M, CHEN Y P, et al. Monodisperse polyethylene
Preparation and properties of PEG/APS-SiO 2/O-CNTs phase change glycol "brushes" with enhanced lipophilicity, and thermo and plasma
materials with enhanced thermal conductivity[J]. Fine Chemicals (精 stability[J]. Chemical Communications, 2019, 55(13): 1895-1898.
(上接第 2012 页) hydrogenation of CO and CO 2 to lower olefins with bifunctional
catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis,
[9] SU J J, WANG D, WANG Y D, et al. Direct conversion of syngas 2020, 10(15): 8303-8314
into light olefin over zirconium-doped indium( Ⅲ ) oxide and [14] LIU S S, DING Q D, GUO T, et al. Research progress on molding
SAPO-34 bifunctional catalysts: Design of oxide component and process of catalysts for fixed bed reactor[J]. The Chinese Journal of
construction of reaction network[J]. ChemCatChem, 2018, 10(7): Process Engineering (过程工程学报), 2023, 23(4): 501-511.
1536-1541. [15] TIAN S (田帅). Synthesis and morphology characterization of
[10] HUANG W D (黄伟东), ZHENG H P (郑和平), GUO Y J (郭玉静), indium oxide (In 2O 3) crystals[D]. Baoding: Hebei University (河北
et al. Bifunctional catalyst for conversion of syngas to light olefins 大学), 2009.
with low CO 2 selectivity[J]. Fine Chemicals (精细化工), 2022, [16] LIU N, JIAO F, PAN X L, et al. Size effects of ZnO nanoparticles in
39(10): 2092-2098. bifunctional catalysts for selective syngas conversion[J]. American
[11] NI Y M, LIU Y, CHEN Z Y, et al. Realizing and recognizing Chemical Society Catalysis, 2019, 9(2): 960-966.
syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, [17] TAN L, YANG G H, YONEYAMA Y, et al. Iso-butanol direct
2019, 9(2): 1026-1032. synthesis from syngas over the alkali metals modified Cr/ZnO
[12] JIAO W Q, SU J J, ZHOU H B, et al. Dual template synthesis of catalysts[J]. Applied Catalysis A: General, 2015, 505: 141-149.
SAPO-18/34 zeolite intergrowths and their performances in direct [18] WANG Q J (王前进), SHANG Y S (尚蕴山), XU D P (许德平),
conversion of syngas to olefins[J]. Microporous and Mesoporous et al. Research progress in OX-ZEO catalysts for single-step
Materials, 2020, 306: 1-9. synthesis of light olefins from syngas[J]. Natural Gas Chemical
[13] LIU X L, WANG M H, YIN H R, et al. Tandem catalysis for Industry (天然气化工-C1 化学与化工), 2020, 45(5): 121-127, 134.