Page 33 - 《精细化工》2023年第9期
P. 33
第 9 期 张慧芳,等: 共价有机骨架材料的制备及在环境领域的应用 ·1881·
致床层中部分面积堵塞,床层高度较高,造成床层 [9] WANG R, KONG W F, ZHOU T, et al. Organobase modulated
synthesis of high-quality β-ketoenamine-linked covalent organic
压降增大,传质阻力增大,导致 COFs 去除率降低,
frameworks[J]. Chemical Communication, 2021, 57: 331-334.
平衡吸附量降低。而床层压降对物料流体进入固定 [10] URIBE-ROMO F J, HUNT J R, FURUKAWA H, et al. A crystalline
imine-linked 3-D porous covalent organic framework[J]. Journal of
床的动量要求及其对床层内的流体流动、传热以及
the American Chemical Society, 2009, 131: 4570-4571.
传质过程的影响非常大,准确预测床层压降,对于 [11] PANG Z F, XU S Q, ZHOU T Y, et al. Construction of covalent
固定床的设计与操作都有十分重要的意义 [98-99] 。 organic frameworks bearing three different kinds of pores through
the heterostructural mixed linker strategy[J]. Journal of the American
基于上述分析,为促进 COFs 及其多功能复合 Chemical Society, 2016, 138: 4710-4713.
材料在环境修复领域的应用发展,提出以下建议: [12] URIBE-ROMO F J, DOONAN C J, FURUKAWA H, et al. Crystalline
covalent organic frameworks with hydrazone linkages[J]. Journal of
(1)未来的研究还需要集中在合成新的 COFs,以 the American Chemical Society, 2011, 133: 11478-11481.
使其吸附或提取更多的环境领域的污染物。(2)在 [13] ZHANG Y W, SHEN X C, FENG X, et al. Covalent organic
frameworks as pH responsive signaling scaffolds[J]. Chemical
COFs 材料的合成方面,需要进一步开发更简单的制 Communications, 2016, 52(74): 11088-11091.
备方法,提高其机械性能和化学结构的稳定性,增 [14] MITRA S, SASMAL H S, KUNDU T, et al. Targeted drug delivery
in covalent organic nanosheets (CONs) via sequential postsynthetic
强其亲水吸附能力。(3)在功能性方面,必须通过与
modification[J]. Journal of the American Chemical Society, 2017,
现有技术的结合,来提高 COFs 的吸附选择性,并进 139: 4513-4520.
[15] JIANG S Y, GAN S X, ZHANG X, et al. Aminal-linked covalent
一步探索合成含有潜在组分的多功能 COFs,因为含
organic frameworks through condensation of secondary amine with
有潜在组分的 COFs 在合成后还可以进一步改性或 aldehyde[J]. Journal of the American Chemical Society, 2019,
复合其他功能材料,提高 COFs 的普遍适用性;(4) 141(38): 14981-14986.
[16] LU M, LI Q, LIU J, et al. Installing earth-abundant metal active
为解决粉末状 COFs 在实际应用方面的问题,目前 centers to covalent organic frameworks for efficient heterogeneous
已经有文献报道了块体 COFs 的合成技术,如溶胶- photocatalytic CO 2 reduction[J]. Applied Catalysis B, 2019, 254:
624-633.
凝胶法,原位气相发泡法、动态亚胺交换合成法、 [17] KAMIYA K. Selective single-atom electrocatalysts: A review with a
模板辅助合成法等,但大部分还处在探索阶段,还 focus on metal-doped covalent triazine frameworks[J]. Chemical
Science, 2020, 11: 8339-8349.
存在许多不足。一些方法中使用的如冷冻干燥和超 [18] MU M M, WANG Y W, QIN Y T, et al. Two-dimensional imine-
临界 CO 2 干燥等技术严重依赖高能耗和昂贵的模 linked covalent organic frameworks as a platform for selective
oxidation of olefins[J]. ACS Applied Materials & Interfaces, 2017, 9:
塑技术,使其难以大规模生产 [100-101] 。所以,面对 22856-22863.
COFs 的工业化应用遇到的实际问题还需要做大量 [19] LIU M, CHEN Y J, HUANG X, et al. Porphyrin-based COF 2D
materials: Variable modification of sensing performances by post-
工作。基于 COFs 材料的独特优势,在解决上述难
metallization[J]. Angewandte Chemie International Edition, 2022,
题的基础上,COFs 材料将在环境修复领域发挥重 61(12): 202115308.
要的作用。 [20] SUN X M (孙晓曼). Synthesis, characterization and heterogeneous
catalytic performance of porphyrin-based porous organic polymers[D].
Changchun: Jilin University (吉林大学), 2021.
参考文献: [21] MERÍ-BOFÍ L, ROYUELA S, ZAMORA F, et al. Thiol grafted
[1] LI N, DU J J, WU D, et al. Recent advances in facile synthesis and imine-based covalent organic frameworks for water remediation
applications of covalent organic framework materials as superior through selective removal of Hg(Ⅱ)[J]. Journal of Materials Chemistry
adsorbents in sample pretreatment[J]. Trends in Analytical Chemistry, A, 2017, 5: 17973-17981.
2018, 108: 154-166. [22] LU Q Y, MA Y C, LI H, et al. Postsynthetic functionalization of
[2] LYLE S J, WALLER P J, YAGHI O M. Covalent organic frameworks: three-dimensional covalent organic frameworks for selective extraction
Organic chemistry extended into two and three dimensions[J]. Trends of lanthanide ions[J]. Angewandte Chemie International Edition,
in Chemistry, 2019, 1: 172-184. 2018, 57(21): 6042-6048.
[3] GUAN X Y, CHEN F Q, FANG Q R, et al. Design and applications [23] ZHANG B, WEI M F, MAO H Y, et al. Crystalline dioxin-linked
of three dimensional covalent organic frameworks[J]. Chemical covalent organic frameworks from irreversible reactions[J]. Journal
Society Reviews, 2020, 49(5): 1357-1384. of the American Chemical Society, 2018, 14: 12715-12719.
[4] XU H S, LUO Y, SEE P Z, et al. Divergent chemistry paths for 3D [24] CHENG G, ZHANG A R, ZHAO Z W, et al. Extremely stable
and 1D metallo-covalent organic frameworks[J]. Angewandte amidoxime functionalized covalent organic frameworks for uranium
Chemie, 2020, 132(28): 11624-11629. extraction from seawater with high efficiency and selectivity[J].
[5] YAGHI O M. Reticular chemistry-construction, properties, and Science Bulletin, 2021, 66(19): 1994-2001.
precision reactions of frameworks[J]. Journal of the American Chemical [25] JIANG Q, LI Y S, ZHAO X X, et al. Inverse-vulcanization of vinyl
Society, 2016, 138(48): 15507-15509. functionalized covalent organic frameworks as efficient cathode
[6] SEGURA J L, ROYUELA S, MAR RAMOS M. Post-synthetic materials for Li-S batteries[J]. Journal of Materials Chemistry A,
modification of covalent organic frameworks[J]. Chemical Society 2018, 6: 17977-17981.
Reviews, 2019, 48: 3903-3945. [26] ZHAO S, DONG B, GE R L, et al. Channel-wall functionalization in
[7] CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks for the enhancement of CO 2 uptake and
covalent organic frameworks[J]. Science, 2005, 310: 1166-1170. CO 2 /N 2 selectivity[J]. RSC Advances, 2016, 6: 38774-38781.
[8] TILFOR R W, MUGAVERO S J, PELLECHIA P J, et al. Tailoring [27] LI L Y, ZHOU Z M, LI L Y, et al. Thioether-functionalized 2D
microporosity in covalent organic frameworks[J]. Advanced Materials, covalent organic framework featuring specific affinity to Au for
2008, 20: 2741-2746. photocatalytic hydrogen production from seawater[J]. ACS Sustainable