Page 33 - 《精细化工》2023年第9期
P. 33

第 9 期                    张慧芳,等:  共价有机骨架材料的制备及在环境领域的应用                                   ·1881·


            致床层中部分面积堵塞,床层高度较高,造成床层                             [9]   WANG  R, KONG  W F, ZHOU  T,  et al. Organobase modulated
                                                                   synthesis of high-quality  β-ketoenamine-linked covalent organic
            压降增大,传质阻力增大,导致 COFs 去除率降低,
                                                                   frameworks[J]. Chemical Communication, 2021, 57: 331-334.
            平衡吸附量降低。而床层压降对物料流体进入固定                             [10]  URIBE-ROMO F J, HUNT J R, FURUKAWA H, et al. A crystalline
                                                                   imine-linked 3-D porous covalent organic framework[J]. Journal of
            床的动量要求及其对床层内的流体流动、传热以及
                                                                   the American Chemical Society, 2009, 131: 4570-4571.
            传质过程的影响非常大,准确预测床层压降,对于                             [11]  PANG Z F, XU S Q, ZHOU T  Y,  et al. Construction of covalent
            固定床的设计与操作都有十分重要的意义                  [98-99] 。          organic frameworks bearing three different kinds  of  pores through
                                                                   the heterostructural mixed linker strategy[J]. Journal of the American
                 基于上述分析,为促进 COFs 及其多功能复合                           Chemical Society, 2016, 138: 4710-4713.
            材料在环境修复领域的应用发展,提出以下建议:                             [12]  URIBE-ROMO F J, DOONAN C J, FURUKAWA H, et al. Crystalline
                                                                   covalent organic frameworks with hydrazone linkages[J]. Journal of
            (1)未来的研究还需要集中在合成新的 COFs,以                              the American Chemical Society, 2011, 133: 11478-11481.
            使其吸附或提取更多的环境领域的污染物。(2)在                            [13]  ZHANG Y W, SHEN X C, FENG X,  et al. Covalent organic
                                                                   frameworks as  pH responsive signaling  scaffolds[J]. Chemical
            COFs 材料的合成方面,需要进一步开发更简单的制                              Communications, 2016, 52(74): 11088-11091.
            备方法,提高其机械性能和化学结构的稳定性,增                             [14]  MITRA S, SASMAL H S, KUNDU T, et al. Targeted drug delivery
                                                                   in covalent organic nanosheets (CONs) via sequential postsynthetic
            强其亲水吸附能力。(3)在功能性方面,必须通过与
                                                                   modification[J]. Journal  of the  American Chemical Society, 2017,
            现有技术的结合,来提高 COFs 的吸附选择性,并进                             139: 4513-4520.
                                                               [15]  JIANG S  Y, GAN  S X, ZHANG X,  et al. Aminal-linked covalent
            一步探索合成含有潜在组分的多功能 COFs,因为含
                                                                   organic frameworks through condensation of secondary amine with
            有潜在组分的 COFs 在合成后还可以进一步改性或                              aldehyde[J]. Journal of the American Chemical Society, 2019,
            复合其他功能材料,提高 COFs 的普遍适用性;(4)                            141(38): 14981-14986.
                                                               [16]  LU M, LI Q, LIU J,  et al.  Installing earth-abundant metal active
            为解决粉末状 COFs 在实际应用方面的问题,目前                              centers to covalent organic frameworks for efficient  heterogeneous
            已经有文献报道了块体 COFs 的合成技术,如溶胶-                             photocatalytic CO 2 reduction[J]. Applied Catalysis B, 2019, 254:
                                                                   624-633.
            凝胶法,原位气相发泡法、动态亚胺交换合成法、                             [17]  KAMIYA K. Selective single-atom electrocatalysts: A review with a
            模板辅助合成法等,但大部分还处在探索阶段,还                                 focus  on metal-doped covalent  triazine frameworks[J]. Chemical
                                                                   Science, 2020, 11: 8339-8349.
            存在许多不足。一些方法中使用的如冷冻干燥和超                             [18]  MU M M, WANG Y W, QIN Y T,  et al. Two-dimensional imine-
            临界 CO 2 干燥等技术严重依赖高能耗和昂贵的模                              linked covalent organic frameworks  as a platform for selective
                                                                   oxidation of olefins[J]. ACS Applied Materials & Interfaces, 2017, 9:
            塑技术,使其难以大规模生产               [100-101] 。所以,面对           22856-22863.
            COFs 的工业化应用遇到的实际问题还需要做大量                           [19]  LIU M,  CHEN Y  J, HUANG X,  et al. Porphyrin-based COF 2D
                                                                   materials: Variable modification  of sensing  performances by post-
            工作。基于 COFs 材料的独特优势,在解决上述难
                                                                   metallization[J].  Angewandte Chemie International Edition, 2022,
            题的基础上,COFs 材料将在环境修复领域发挥重                               61(12): 202115308.
            要的作用。                                              [20]  SUN X M  (孙晓曼).  Synthesis, characterization and  heterogeneous
                                                                   catalytic performance of porphyrin-based porous organic polymers[D].
                                                                   Changchun: Jilin University (吉林大学), 2021.
            参考文献:                                              [21]  MERÍ-BOFÍ L, ROYUELA S, ZAMORA F,  et al. Thiol  grafted
            [1]   LI N, DU J J, WU D, et al. Recent advances in facile synthesis and   imine-based covalent organic frameworks for water remediation
                 applications of covalent organic framework materials as superior   through selective removal of Hg(Ⅱ)[J]. Journal of Materials Chemistry
                 adsorbents in sample pretreatment[J]. Trends in Analytical Chemistry,   A, 2017, 5: 17973-17981.
                 2018, 108: 154-166.                           [22]  LU  Q Y, MA Y C, LI H,  et al. Postsynthetic functionalization of
            [2]   LYLE S J, WALLER P J, YAGHI O M. Covalent organic frameworks:   three-dimensional covalent organic frameworks for selective extraction
                 Organic chemistry extended into two and three dimensions[J]. Trends   of lanthanide ions[J]. Angewandte Chemie International Edition,
                 in Chemistry, 2019, 1: 172-184.                   2018, 57(21): 6042-6048.
            [3]   GUAN X Y, CHEN F Q, FANG Q R, et al. Design and applications   [23]  ZHANG  B, WEI  M F, MAO H  Y,  et al. Crystalline dioxin-linked
                 of three dimensional covalent organic frameworks[J]. Chemical   covalent organic frameworks from irreversible reactions[J]. Journal
                 Society Reviews, 2020, 49(5): 1357-1384.          of the American Chemical Society, 2018, 14: 12715-12719.
            [4]   XU H S, LUO Y, SEE P Z, et al. Divergent chemistry paths for 3D   [24]  CHENG G, ZHANG A R, ZHAO Z W,  et al. Extremely stable
                 and 1D metallo-covalent organic frameworks[J]. Angewandte   amidoxime functionalized covalent organic frameworks for uranium
                 Chemie, 2020, 132(28): 11624-11629.               extraction  from seawater with high  efficiency and selectivity[J].
            [5]   YAGHI O M. Reticular chemistry-construction, properties, and   Science Bulletin, 2021, 66(19): 1994-2001.
                 precision reactions of frameworks[J]. Journal of the American Chemical   [25]  JIANG Q, LI Y S, ZHAO X X, et al. Inverse-vulcanization of vinyl
                 Society, 2016, 138(48): 15507-15509.              functionalized covalent organic frameworks as efficient cathode
            [6]   SEGURA J L, ROYUELA S, MAR RAMOS M. Post-synthetic   materials for Li-S  batteries[J]. Journal of Materials Chemistry A,
                 modification  of covalent organic frameworks[J]. Chemical Society   2018, 6: 17977-17981.
                 Reviews, 2019, 48: 3903-3945.                 [26]  ZHAO S, DONG B, GE R L, et al. Channel-wall functionalization in
            [7]   CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline,   covalent organic frameworks for the enhancement of CO 2 uptake and
                 covalent organic frameworks[J]. Science, 2005, 310: 1166-1170.   CO 2 /N 2 selectivity[J]. RSC Advances, 2016, 6: 38774-38781.
            [8]   TILFOR R W, MUGAVERO S J, PELLECHIA P J, et al. Tailoring   [27]  LI L Y,  ZHOU Z  M, LI L  Y,  et al. Thioether-functionalized  2D
                 microporosity in covalent organic frameworks[J]. Advanced Materials,   covalent organic framework featuring specific affinity to Au for
                 2008, 20: 2741-2746.                              photocatalytic hydrogen production from seawater[J]. ACS Sustainable
   28   29   30   31   32   33   34   35   36   37   38