Page 34 - 《精细化工》2023年第9期
P. 34
·1882· 精细化工 FINE CHEMICALS 第 40 卷
Chemistry & Engineering, 2019, 7(22): 18574-18581. Advances, 2017, 7: 1697-1700.
[28] ZHANG S N, ZHENG Y L, AN H D, et al. Covalent organic [47] BISWAL B P, CHAUDHARI H D, BANERJEE R, et al. Chemically
frameworks with chirality enriched by biomolecules for efficient stable covalent organic framework (COF)-polybenzimida-zole hybrid
chiral separation[J]. Angewandte Chemie International Edition, 2018, membranes: Enhanced gas separation through pore modulation[J].
57(51): 16754-16759. Chemistry-A European Journal, 2016, 22(14): 4695-4699.
[29] WANG Y C, LIU H, PAN Q Y, et al. Construction of fully conjugated [48] CHEN J, GUAN M M, LI K, et al. Novel quaternary ammonium-
covalent organic frameworks via facile linkage conversion for efficient functionalized covalent organic frameworks/poly(2,6-dimethyl-
photoenzymatic catalysis[J]. Journal of the American Chemical 1,4-phenylene oxide) hybrid anion exchange membranes with
Society, 2020, 142(13): 5958-5963. enhanced ion conductivity and stability[J]. ACS Applied Materials &
[30] GUO H X, WANG J H, FANG Q R, et al. A quaternary-ammonium- Interfaces, 2020, 12(13):15138-15144.
functionalized covalent organic framework for anion conduction[J]. [49] YANG W, LI J, LAN L H, et al. Covalent organic polymers derived
CrystEngComm, 2017, 19: 4905-4910. carbon incorporated with cobalt oxides as a robust oxygen reduction
[31] HU Y M, DUNLAP N, WAN S, et al. Crystalline lithium imidazolate reaction catalyst for fuel cells[J]. Chemical Engineering Journal,
covalent organic frameworks with high Li-ion conductivity[J]. 2020, 390: 124581.
Journal of the American Chemical Society, 2019, 141: 7518-7525. [50] ZHAO X J, PACHFULE P, LI S, et al. Silica-templated covalent
[32] WANG D G, LI N, HU Y M, et al. Highly fluoro-substituted covalent organic framework-derived Fe-N-doped mesoporous carbon as
organic framework and its application in lithium-sulfur batteries[J]. oxygen reduction electrocatalyst[J]. Chemistry of Materials, 2019,
ACS Applied Materials & Interfaces, 2018, 10: 42233-42240. 31(9): 3274-3280.
[33] KHAN N A, HASAN Z, JHUNG S H. Beyond pristine metal-organic [51] WANG Y, XIE M S, LAN J H, et al. Radiation controllable synthesis
frameworks: Preparation and application of nanostructured, nanosized, of robust covalent organic framework conjugates for efficient
−
99
and analogous MOFs[J]. Coordination Chemistry Reviews, 2018, dynamic column extraction of TcO 4[J]. Chem, 2020, 6(10): 2796-
376: 20-45. 2809.
[34] LU Z W, YANG C Y, HE L, et al. Asymmetric hydrophosphonylation [52] LI X, QI Y, YUE G Z, et al. Solvent- and catalyst-free synthesis of an
of imines to construct highly stable covalent organic frameworks azine-linked covalent organic framework and the induced
with efficient intrinsic proton conductivity[J]. Journal of the tautomerization in the adsorption of U(Ⅵ) and Hg(Ⅱ)[J]. Green
American Chemical Society, 2022, 144(22): 9624-9633. Chemistry, 2019, 21(3): 649-657.
2
[35] WALLER P J, LYLE S J, OSBORN POPP T M, et al. Chemical [53] LI F F, CUI W R, JIANG W, et al. Stable sp carbon-conjugated
conversion of linkages in covalent organic frameworks[J]. Journal of covalent organic framework for detection and efficient adsorption of
the American Chemical Society, 2016, 138(48): 15519-15522. uranium from radioactive wastewater[J]. Journal of Hazardous
[36] HAN X, HUANG J J, YUAN C, et al. Chiral 3D covalent organic Materials, 2020, 392: 122333.
frameworks for high performance liquid chromatographic [54] RAVI S, PUTHIARAJ P, YU K, et al. Porous covalent organic
enantioseparation[J]. Journal of the American Chemical Society, polymers comprising a phosphite skeleton for aqueous Nd(Ⅲ)
2018, 140: 892-895. capture[J]. ACS Applied Materials & Interfaces, 2019, 11(12):
[37] WANG S, ZHANG C, ZHANG Z Y, et al. Asymmetrical exchange of 11488-11497.
monomers for constructing hollow nanoparticles and antifragile [55] ZHANG L W, LI Y, WANG Y, et al. Integration of covalent organic
monoliths[J]. Matter, 2021, 4(2): 618-634. frameworks into hydrophilic membrane with hierarchical porous
[38] PACHFULE P, KANDAMBETH S, DÍAZ DÍAZ D, et al. Highly structure for fast adsorption of metal ions[J]. Journal of Hazardous
stable covalent organic framework-Au nanoparticles hybrids for Materials, 2021, 407: 124390.
enhanced activity for nitrophenol reduction[J]. Chemical Communications, [56] AKPE S G, AHMED I, PUTHIARAJ P, et al. Microporous organic
2014, 50: 3169-3172. polymers for efficient removal of sulfamethoxazole from aqueous
[39] PACHFULE P, PANDA M K, KANDAMBETH S, et al. Multifunctional solutions[J]. Microporous and Mesoporous Materials, 2020, 296:
and robust covalent organic framework-nanoparticle hybrids[J]. 109979.
Journal of Materials Chemistry A, 2014, 2: 7944-7952. [57] ZHU X, AN S H, LIU Y, et al. Efficient removal of organic dye
[40] PARK E, JACK J, HU Y M, et al. Covalent organic framework- pollutants using covalent organic frameworks[J]. AIChE Journal,
supported platinum nanoparticles as efficient electrocatalysts for 2017, 63(8): 3470-3478.
water reduction[J]. Nanoscale, 2020, 12(4): 2596-2602. [58] HOU Y X, ZHANG X M, WANG C M, et al. Novel imine-linked
[41] THOTE J, AIYAPPA H B, DESHPANDE A, et al. A covalent organic porphyrin covalent organic frameworks with good adsorption
framework-cadmium sulfide hybrid as a prototype photocatalyst for removing property of RhB[J]. New Journal of Chemistry, 2017,
visible-light-driven hydrogen production[J]. Chemistry-A European 41(14): 6145-6151.
Journal, 2014, 20(48): 15961-15965. [59] WANG R Q, WEI X B, FENG Y Q. β-Cyclodextrin covalent organic
[42] ZHONG X, LU Z P, LIANG W, et al. The fabrication of 3D framework for selective molecular adsorption[J]. Chemistry-A European
hierarchical flower-like δ-MnO 2@COF nanocomposites for the Journal, 2018, 24(43): 10979-10983.
2+
efficient and ultrafast removal of UO 2 ions from aqueous solution[J]. [60] LIANG Y, FENG L J, LIU X, et al. Enhanced selective adsorption of
Environmental Science-Nano, 2020, 7: 3303-3317. NSAIDs by covalent organic frameworks via functional group tuning
[43] LI Y, YANG C X, YAN X P. Controllable preparation of core-shell [J]. Chemical Engineering Journal, 2021, 404: 127095.
magnetic covalent-organic framework nanospheres for efficient [61] JI W, XIAO L I, LING Y H, et al. Removal of Gen X and
adsorption and removal of bisphenols in aqueous solution[J]. Chemical perfluorinated alkyl substances from water by amine-functionalized
Communication, 2017, 53: 2511-2514. covalent organic frameworks[J]. Journal of the American Chemical
[44] MULLANGI D, DHAVALE V, SHALINI S, et al. Low-overpotential Society, 2018, 140: 12677-12681.
electrocatalytic water splitting with noble-metal-free nanoparticles [62] ZHUANG S T, CHEN R, LIU Y, et al. Magnetic COFs for the
3
supported in a sp N-rich flexible COF[J]. Advanced Energy adsorptive removal of diclofenac and sulfamethazine from aqueous
Materials, 2016, 6(13): 1600110. solution: Adsorption kinetics, isotherms study and DFT calculation
[45] GUO M, JAYAKUMAR S, LUO M F, et al. The promotion effect of [J]. Journal of Hazardous Materials, 2020, 385: 121596.
π-π interactions in Pd NPs catalysed selective hydrogenation[J]. [63] ROMERO V, FERANADES S P S, KOVÁRP, et al. Efficient
Nature Communications, 2022, 13: 1770. adsorption of endocrine-disrupting pesticides from water with a
[46] XIN Y X, WANG C, WANG Y, et al. Encapsulation of an ionic liquid reusable magnetic covalent organic framework[J]. Microporous and
into the nanopores of a 3D covalent organic framework[J]. RSC Mesoporous Materials, 2020, 307: 110523.