Page 35 - 《精细化工》2023年第9期
P. 35

第 9 期                    张慧芳,等:  共价有机骨架材料的制备及在环境领域的应用                                   ·1883·


            [64]  LI Y X, ZHANG  H N, CHEN  Y  T,  et al. Core-shell structured   Materials, 2022, 34(30): 2203139.
                 magnetic covalent  organic framework nanocomposites for triclosan   [84]  MI Z, ZHOU T,  WENG W J,  et al. Covalent organic frameworks
                 and triclocarban adsorption[J]. ACS Applied Materials & Interfaces,   enabling site isolation of viologen-derived electron-transfer mediators
                 2019, 11(25): 22492-22500.                        for stable photocatalytic hydrogen evolution[J]. Angewandte Chemie
            [65]  KHAN N A, ZHANG R N, WANG X Y, et al. Assembling covalent   International Edition, 2021, 60(17): 9642-9649.
                 organic framework  membranes  via phase switching  for ultrafast   [85]  LI Y,  YANG L, HE H,  et al.  In situ photodeposition of platinum
                 molecular transport[J]. Nature Communications, 2022, 13: 3169.   clusters on a covalent organic framework for photocatalytic hydrogen
            [66]  ZHANG X K, LI H, WANG J, et al. In-situ grown covalent organic   production[J]. Nature Communications, 2022, 13(1): 1-9.
                 framework nanosheets on graphene for membrane-based dye/salt   [86]  CHEN C  X, XIONG  Y  Y,  ZHONG X,  et al. Enhancing
                 separation[J]. Journal of Membrane Science, 2019, 581: 321-330.   photocatalytic hydrogen production  via the construction  of robust
            [67]  YANG  H, YANG L X, WANG H J,  et al. Covalent organic   multivariate  Ti-MOF/COF composites[J]. Angewandte Chemie,
                 framework membranes through a mixed-dimensional assembly for   2022, 134(3): e202114071.
                 molecular separations[J]. Nature Communications, 2019, 10: 2101.   [87]  LV H Z, ZHAO  X L, NIU H  Y,  et al. Ball milling  synthesis  of
            [68]  WANG  M D, ZHANG P H, LIANG X,  et al. Ultrafast  seawater   covalent organic framework as a highly active photocatalyst for
                 desalination with covalent organic framework membranes[J]. Nature   degradation of organic contaminants[J]. Journal of Hazardous Materials,
                 Sustainability, 2022, 5: 518-526.                 2019, 369: 494-502.
            [69]  DENG Q W, REN G Q, LI Y J, et al. Hydrogen and CO 2 storage in   [88]  ZHU S R, QI Q, FANG Y,  et al.  Covalent triazine framework
                 high surface area covalent triazine-based frameworks[J]. Materials Today   modified BiOBr nanoflake with enhanced photocatalytic activity for
                 Energy, 2020, 18: 100506.                         antibiotic removal[J]. Crystal Growth & Design, 2018, 18(2): 883-891.
            [70]  ZHANG  M, ZHENG R J, MA  Y,  et al. N-rich covalent organic   [89]  HU  X W, LONG Y,  FAN M  Y,  et al. Two-dimensional  covalent
                 frameworks with different pore size for high-pressure CO 2 adsorption   organic frameworks as self-template derived nitrogen-doped carbon
                 [J]. Microporous and Mesoporous Materials, 2019, 285: 70-79.   nanosheets for ecofriendly metal-free catalysis[J]. Applied Catalysis
            [71]  LIU X M, LIM G J H, WANG Y X, et al. Binder-free 3D printing of   B-Environmental, 2019, 244: 25-35.
                 covalent organic framework (COF) monoliths for CO 2 adsorption[J].   [90]  QIU J K, ZHAO Y L, LI Z Y, et al. Imidazolium-salt-functionalized
                 Chemical Engineering Journal, 2021, 403: 126333.   covalent organic frameworks for highly efficient catalysis of CO 2
            [72]  GHOSH S, SINGH J K. Hydrogen adsorption in pyridine bridged   conversion[J]. ChemSusChem, 2019, 12(11): 2421-2427.
                 porphyrin-covalent organic framework[J]. International Journal of   [91]  AHMED I, YU  K, PUTHIARAJ P,  et al. Metal-free oxidative
                 Hydrogen Energy, 2019, 44(3): 1782-1796.          desulfurization  over a  microporous triazine polymer catalyst under
            [73]  YIN Z J, XU S Q, ZHAN T G, et al. Ultrahigh volatile iodine uptake   ambient conditions[J]. Fuel Processing Technology, 2020, 207: 106469.
                 by hollow microspheres formed from a heteropore covalent organic   [92]  CUI W R, JIANG W, ZHANG C R, et al. Regenerable carbohydrazide-
                 framework[J]. Chemical Communications, 2017, 53: 7266-7269.   linked fluorescent  covalent organic frameworks for ultrasensitive
            [74]  WANG P, XU  Q,  LI Z P,  et al.  Exceptional iodine capture in 2D   detection and removal of mercury[J]. ACS Sustainable Chemistry &
                 covalent organic frameworks[J]. Advanced Materials, 2018, 30(29):   Engineering, 2020, 8(1): 445-451.
                 1801991.                                      [93]  LI Z P,  ZHANG  Y W, XIA H,  et al. A robust and luminescent
            [75]  AN S H, ZHU  X, HE Y  Y,  et al. Porosity modulation  in   covalent organic framework as a highly sensitive and selective sensor
                                                                                 2+
                 two-dimensional covalent organic frameworks leads to enhanced   for the detection of Cu  ions[J]. Chemical Communications, 2016,
                 iodine adsorption performance[J]. Industrial & Engineering Chemistry   52: 6613-6616.
                 Research, 2019, 58(24): 10495-10502.          [94]  LI Z P, HUANG N, LEE K H, et al. Light-emitting covalent organic
            [76]  DUAN K, WANG J, ZHANG Y T,  et al. Covalent organic   frameworks: Fluorescence improving  via pinpoint surgery and
                 frameworks (COFs) functionalized mixed matrix membrane for   selective switch-on sensing of anions[J]. Journal of the American
                 effective CO 2/N 2 separation[J]. Journal of Membrane Science, 2019,   Chemical Society, 2018, 140(39): 12374-12377.
                 572: 588-595.                                 [95]  DALAPATI S, JIN E, ADDICOAT M,  et al. Highly emissive
            [77]  DAS S, BEN T,  QIU S L,  et al. Two-dimensional  COF-three-   covalent organic frameworks[J]. Journal of the American Chemical
                 dimensional MOF dual-layer membranes with unprecedentedly high   Society, 2016,138(18): 5797-5800.
                 H 2/CO 2 selectivity and ultrahigh gas permeabilities[J]. ACS Applied   [96]  WANG M H,  HU M  Y, LIU J M,  et al. Covalent organic
                 Materials & Interfaces, 2020, 12(47): 52899-52907.   framework-based electrochemical  aptasensors for the ultrasensitive
            [78]  WANG P Y, PENG Y, ZHU C Y, et al. Single-phase covalent organic   detection of antibiotics[J]. Biosensors & Bioelectronics, 2019, 132:
                 framework staggered stacking nanosheet membrane for CO 2-selective   8-16.
                 separation[J]. Angewandte Chemie International Edition,  2021, 60   [97]  GUO  L L, SONG Y H,  CAI K  Y,  et al.  "On-off" ratiometric
                                                                                       2+
                 (35): 19047-19052.                                 fluorescent detection of Hg  based on N-doped carbon
            [79]  GUO Z Y, WU H, CHEN Y, et al. Missing-linker defects in covalent   dots-Rhodamine B@TAPT-DHTA-COF[J]. Spectrochimica Acta
                 organic framework membranes for  efficient CO 2 separation[J].   Part A, Molecular and Biomolecular Spectroscopy, 2020, 227:
                 Angewandte Chemie, 2022, 61(41): e202210466.       117703.
            [80]  JIANG H F, CHEN Y, SONG S  Q,  et al. Confined  facilitated   [98]  TIAN T (田甜). Preparati and adsorption properties of triazine-based
                 transport within covalent organic frameworks for propylene/propane   organic framework based metrrials[D]. Tianjin: Hebei University of
                 membrane separation[J]. Chemical Engineering Journal, 2022, 439:   Technology (河北工业大学), 2021.
                 135657.                                       [99]  LIU Y T, CHEN L Y, YANG L F, et al. Porous framework materials
            [81]  LI H R (李红蕊), CHEN M H (陈铭辉), LIU C X (刘晨曦), et al.   for energy & environment relevant applications: A systematic
                  2
                 sp -Carbon covalent organic framework for visible-light-driven   review[J]. Green Energy & Environment, 2022. https://doi.org/10.
                 photocatalytic water molecules oxidation[J]. Fine Chemicals (精细化  1016/ j.gee.2022.12.010.
                 工), 2022, 39(6): 1148-1154.                   [100]  ZHANG P H, WANG Z F, YANG  Y,  et al. Melt polymerization
            [82]  SU P P, IWASE K, HARADA T, et al. Covalent triazine framework   synthesis of a class of robust self-shaped olefin-linked COF foams as
                 modified with coordinatively-unsaturated Co or Ni atoms for CO 2   high-efficiency separators[J]. Science  China Chemistry,  2022, 65:
                 electrochemical reduction[J]. Chemical Science, 2018, 9: 3941-3947.   1173-1184.
            [83]  YUAN J J, CHEN S T, ZHANG Y Y, et al. Structural regulation of   [101]  LIU R P, YAN Q, TANG Y M, et al. NaCl template-assisted synthesis
                 coupled  phthalocyanine-porphyrin covalent organic frameworks to   of self-floating  COFs foams for the efficient removal of
                 highly active and selective electrocatalytic CO 2 reduction[J]. Advanced   sulfamerazine[J]. Journal of Hazardous Materials, 2022, 421: 126702.
   30   31   32   33   34   35   36   37   38   39   40