Page 35 - 《精细化工》2023年第9期
P. 35
第 9 期 张慧芳,等: 共价有机骨架材料的制备及在环境领域的应用 ·1883·
[64] LI Y X, ZHANG H N, CHEN Y T, et al. Core-shell structured Materials, 2022, 34(30): 2203139.
magnetic covalent organic framework nanocomposites for triclosan [84] MI Z, ZHOU T, WENG W J, et al. Covalent organic frameworks
and triclocarban adsorption[J]. ACS Applied Materials & Interfaces, enabling site isolation of viologen-derived electron-transfer mediators
2019, 11(25): 22492-22500. for stable photocatalytic hydrogen evolution[J]. Angewandte Chemie
[65] KHAN N A, ZHANG R N, WANG X Y, et al. Assembling covalent International Edition, 2021, 60(17): 9642-9649.
organic framework membranes via phase switching for ultrafast [85] LI Y, YANG L, HE H, et al. In situ photodeposition of platinum
molecular transport[J]. Nature Communications, 2022, 13: 3169. clusters on a covalent organic framework for photocatalytic hydrogen
[66] ZHANG X K, LI H, WANG J, et al. In-situ grown covalent organic production[J]. Nature Communications, 2022, 13(1): 1-9.
framework nanosheets on graphene for membrane-based dye/salt [86] CHEN C X, XIONG Y Y, ZHONG X, et al. Enhancing
separation[J]. Journal of Membrane Science, 2019, 581: 321-330. photocatalytic hydrogen production via the construction of robust
[67] YANG H, YANG L X, WANG H J, et al. Covalent organic multivariate Ti-MOF/COF composites[J]. Angewandte Chemie,
framework membranes through a mixed-dimensional assembly for 2022, 134(3): e202114071.
molecular separations[J]. Nature Communications, 2019, 10: 2101. [87] LV H Z, ZHAO X L, NIU H Y, et al. Ball milling synthesis of
[68] WANG M D, ZHANG P H, LIANG X, et al. Ultrafast seawater covalent organic framework as a highly active photocatalyst for
desalination with covalent organic framework membranes[J]. Nature degradation of organic contaminants[J]. Journal of Hazardous Materials,
Sustainability, 2022, 5: 518-526. 2019, 369: 494-502.
[69] DENG Q W, REN G Q, LI Y J, et al. Hydrogen and CO 2 storage in [88] ZHU S R, QI Q, FANG Y, et al. Covalent triazine framework
high surface area covalent triazine-based frameworks[J]. Materials Today modified BiOBr nanoflake with enhanced photocatalytic activity for
Energy, 2020, 18: 100506. antibiotic removal[J]. Crystal Growth & Design, 2018, 18(2): 883-891.
[70] ZHANG M, ZHENG R J, MA Y, et al. N-rich covalent organic [89] HU X W, LONG Y, FAN M Y, et al. Two-dimensional covalent
frameworks with different pore size for high-pressure CO 2 adsorption organic frameworks as self-template derived nitrogen-doped carbon
[J]. Microporous and Mesoporous Materials, 2019, 285: 70-79. nanosheets for ecofriendly metal-free catalysis[J]. Applied Catalysis
[71] LIU X M, LIM G J H, WANG Y X, et al. Binder-free 3D printing of B-Environmental, 2019, 244: 25-35.
covalent organic framework (COF) monoliths for CO 2 adsorption[J]. [90] QIU J K, ZHAO Y L, LI Z Y, et al. Imidazolium-salt-functionalized
Chemical Engineering Journal, 2021, 403: 126333. covalent organic frameworks for highly efficient catalysis of CO 2
[72] GHOSH S, SINGH J K. Hydrogen adsorption in pyridine bridged conversion[J]. ChemSusChem, 2019, 12(11): 2421-2427.
porphyrin-covalent organic framework[J]. International Journal of [91] AHMED I, YU K, PUTHIARAJ P, et al. Metal-free oxidative
Hydrogen Energy, 2019, 44(3): 1782-1796. desulfurization over a microporous triazine polymer catalyst under
[73] YIN Z J, XU S Q, ZHAN T G, et al. Ultrahigh volatile iodine uptake ambient conditions[J]. Fuel Processing Technology, 2020, 207: 106469.
by hollow microspheres formed from a heteropore covalent organic [92] CUI W R, JIANG W, ZHANG C R, et al. Regenerable carbohydrazide-
framework[J]. Chemical Communications, 2017, 53: 7266-7269. linked fluorescent covalent organic frameworks for ultrasensitive
[74] WANG P, XU Q, LI Z P, et al. Exceptional iodine capture in 2D detection and removal of mercury[J]. ACS Sustainable Chemistry &
covalent organic frameworks[J]. Advanced Materials, 2018, 30(29): Engineering, 2020, 8(1): 445-451.
1801991. [93] LI Z P, ZHANG Y W, XIA H, et al. A robust and luminescent
[75] AN S H, ZHU X, HE Y Y, et al. Porosity modulation in covalent organic framework as a highly sensitive and selective sensor
2+
two-dimensional covalent organic frameworks leads to enhanced for the detection of Cu ions[J]. Chemical Communications, 2016,
iodine adsorption performance[J]. Industrial & Engineering Chemistry 52: 6613-6616.
Research, 2019, 58(24): 10495-10502. [94] LI Z P, HUANG N, LEE K H, et al. Light-emitting covalent organic
[76] DUAN K, WANG J, ZHANG Y T, et al. Covalent organic frameworks: Fluorescence improving via pinpoint surgery and
frameworks (COFs) functionalized mixed matrix membrane for selective switch-on sensing of anions[J]. Journal of the American
effective CO 2/N 2 separation[J]. Journal of Membrane Science, 2019, Chemical Society, 2018, 140(39): 12374-12377.
572: 588-595. [95] DALAPATI S, JIN E, ADDICOAT M, et al. Highly emissive
[77] DAS S, BEN T, QIU S L, et al. Two-dimensional COF-three- covalent organic frameworks[J]. Journal of the American Chemical
dimensional MOF dual-layer membranes with unprecedentedly high Society, 2016,138(18): 5797-5800.
H 2/CO 2 selectivity and ultrahigh gas permeabilities[J]. ACS Applied [96] WANG M H, HU M Y, LIU J M, et al. Covalent organic
Materials & Interfaces, 2020, 12(47): 52899-52907. framework-based electrochemical aptasensors for the ultrasensitive
[78] WANG P Y, PENG Y, ZHU C Y, et al. Single-phase covalent organic detection of antibiotics[J]. Biosensors & Bioelectronics, 2019, 132:
framework staggered stacking nanosheet membrane for CO 2-selective 8-16.
separation[J]. Angewandte Chemie International Edition, 2021, 60 [97] GUO L L, SONG Y H, CAI K Y, et al. "On-off" ratiometric
2+
(35): 19047-19052. fluorescent detection of Hg based on N-doped carbon
[79] GUO Z Y, WU H, CHEN Y, et al. Missing-linker defects in covalent dots-Rhodamine B@TAPT-DHTA-COF[J]. Spectrochimica Acta
organic framework membranes for efficient CO 2 separation[J]. Part A, Molecular and Biomolecular Spectroscopy, 2020, 227:
Angewandte Chemie, 2022, 61(41): e202210466. 117703.
[80] JIANG H F, CHEN Y, SONG S Q, et al. Confined facilitated [98] TIAN T (田甜). Preparati and adsorption properties of triazine-based
transport within covalent organic frameworks for propylene/propane organic framework based metrrials[D]. Tianjin: Hebei University of
membrane separation[J]. Chemical Engineering Journal, 2022, 439: Technology (河北工业大学), 2021.
135657. [99] LIU Y T, CHEN L Y, YANG L F, et al. Porous framework materials
[81] LI H R (李红蕊), CHEN M H (陈铭辉), LIU C X (刘晨曦), et al. for energy & environment relevant applications: A systematic
2
sp -Carbon covalent organic framework for visible-light-driven review[J]. Green Energy & Environment, 2022. https://doi.org/10.
photocatalytic water molecules oxidation[J]. Fine Chemicals (精细化 1016/ j.gee.2022.12.010.
工), 2022, 39(6): 1148-1154. [100] ZHANG P H, WANG Z F, YANG Y, et al. Melt polymerization
[82] SU P P, IWASE K, HARADA T, et al. Covalent triazine framework synthesis of a class of robust self-shaped olefin-linked COF foams as
modified with coordinatively-unsaturated Co or Ni atoms for CO 2 high-efficiency separators[J]. Science China Chemistry, 2022, 65:
electrochemical reduction[J]. Chemical Science, 2018, 9: 3941-3947. 1173-1184.
[83] YUAN J J, CHEN S T, ZHANG Y Y, et al. Structural regulation of [101] LIU R P, YAN Q, TANG Y M, et al. NaCl template-assisted synthesis
coupled phthalocyanine-porphyrin covalent organic frameworks to of self-floating COFs foams for the efficient removal of
highly active and selective electrocatalytic CO 2 reduction[J]. Advanced sulfamerazine[J]. Journal of Hazardous Materials, 2022, 421: 126702.