Page 74 - 201810
P. 74
·1682· 精细化工 FINE CHEMICALS 第 35 卷
理、催化剂负载方法和聚合工艺放大等关键技术。
参考文献:
[1] Zhang H, Shin Y, Lee D, et al. Preparation of ultra high molecular
weight polyethylene with MgCl 2/TiCl 4 catalyst: effect of internal and
external donor on molecular weight and molecular weight
distribution[J]. Polym Bull, 2011, 66(5): 627-635.
[2] Yu Liming (余黎明). Development status and prospect of UHMW
PE industry in China[J]. Chemical Industry (化学工业), 2012, 30(9):
1-5.
[3] Wang Xinwei (王新威), Sun Yongfei (孙勇飞), Zhang Yumei (张玉
梅), et al. Application and development trend of ultra-high relative
molecular mass polyethylene resin[J]. Shanghai Plastics (上海塑料),
2015, (3): 1-5.
[4] Zohuri G H, Askari M, Ahmadjo S, et al. Preparation of ultra-
图 1 锆络合物Ⅱ催化所得聚乙烯的红外谱图 high-molecular-weight polyethylene and its morphological study
Fig. 1 Infrared spectrum of PE produced by zirconium with a heterogeneous Ziegler-Natta catalyst[J]. J Appl Polym Sci,
2010, 118(6): 3333-3339.
complex Ⅱ [5] Hu Kaida (胡开达), Chen Liqun (陈利群), Wang Jianmin (王建民).
Research progress on polymerization of UHMWPE[J]. Technology &
Development of Chemical Industry (化工技术与开发), 2013, 42(9):
33-36.
[6] Fink G, Steinmetz B, Zechlin J, et al. Propene polymerization with
silica-supported metallocene/MAO catalysts[J]. Chem Rev, 2000,
100(4): 1377-1390.
[7] Hlatky G. Heterogeneous single-site catalysts for olefin polymerization
[J]. Chem Rev, 2000, 100(4): 1347-1376.
[8] Choi Y, Soares J. Supported single-site catalysts for slurry and gas-
phase olefin polymerization[J]. Can J Chem Eng, 2012, 90(3):
646-671.
[9] Romano D, Andablo-Reyes E, Ronca S, et al. Aluninoxane
co-catalysts for the activation of a bis phenoxyimine titanium (Ⅳ)
catalyst in the synthesis of disentangled ultra-high molecular weight
polyethylene[J]. Polymer, 2015, 74: 76-85.
[10] Mandal M, Chakraborty D, Ramkumar V. Zr ( Ⅳ ) complexes
containing salan-type ligands: synthesis, structural characterization
and role as catalysts towards the polymerization of -caprolactone,
rac-lactide, ethylene, homopolymerization and copolymerization of
图 2 锆络合物Ⅱ催化所得聚乙烯的 DSC 谱图 epoxides with CO 2[J]. RSC Adv, 2015, 5(36): 28536-28553.
[11] Wang Y, Fan H, Jie S, et al. Synthesis and characterization of
Fig. 2 DSC curve of PE produced by zirconium complex Ⅱ titanium ( Ⅳ ) complexes bearing end functionalized biphenyl:
efficient catalysts for synthesizing high molecular weight polyethylene
[J]. Inorg Chem Commun, 2014, 41: 68-71.
3 结论 [12] Jones R L, Armoush M Z, Harjati T, et al. Catalysts for UHMWPE
and UHMWPE-copolymers[J]. Inorg Chimi Acta, 2010, 364(1):
275-281.
以 2,6-二甲基环己胺为原料,合成了水杨醛亚 [13] Amgoune A, Krumova M, Mecking S. Nanoparticle-supported
molecular polymerization catalysts[J]. Macromolecules, 2008, 41(22):
胺配体 Ⅰ和相应的芳氧 亚胺锆络合 物Ⅱ,使用 8388-8396.
1 HNMR、 CNMR 和 MS 对其进行了表征。研究了 [14] Wright L A, Hope E G, Solan G A, et al. Active O,N py,N-
13
Titanium(IV) fluoride precatalysts for ethylene polymerization:
锆络合物Ⅱ/MAO 体系催化乙烯聚合性能,实验表明: exploring “fluoride effects” on polymer properties and catalytic
performance[J]. Organometallics, 2016, 35(9): 1183-1191.
(1)锆络合物Ⅱ催化乙烯具有较好活性。在 [15] Ji X, Yao W, Luo X, et al. Synthesis of Ti, Zr and Hf complexes with
a new tetra-azane by one-pot HCl-elimination and their properties as
50 ℃、0.9 MPa 条件下,以甲苯为溶剂,铝与锆物 catalysts for production of UHMWPE[J]. New J Chem, 2016, 40(3):
2071-2078.
质的量比为 10000,络合物Ⅱ催化乙烯活性达到 [16] Makio H, Kashiwa N, Fujita T. FI catalysts: a new family of high
performance catalysts for olefin polymerization[J]. Adv Synth Catal,
53.5 kg PE/(mmolZrh)。聚合体系中温度、铝与锆 2002, 334(5): 477-493.
[17] Makio H, Terao H, Iwashita A, et al. FI catalysts for olefin
物质的量比、时间、溶剂和乙烯压力均对催化聚合 polymerization: a comprehensive treatment[J]. Chem Rev, 2010,
111(4): 2363-2449.
活性存在影响。 [18] Oleinik I, Zaitsev D, Ivanchev S, et al. Design of postmetallocene
(2)黏度测试结果表明,Ⅱ催化所得聚乙烯为 catalytic systems of arylimine type for olefin polymerization:
synthesis of (N-aryl)salicylaldimines containing pent-4-enyloxy group
UHMWPE,聚合物的分子量随乙烯压力提高而增 and their complexes with titanium (Ⅳ) dichloride[J]. Russ J Org
Chem, 2014, 50(2): 191-199.
大,随聚合时间延长而增大;聚合溶剂为正己烷时, [19] Francis P, Cooke Jr R, Elliott J. Fractionation of polyethylene[J]. J
Polym Sci, 1958, 31: 453−466.
6
所得聚乙烯分子量达到 4.110 g/mol。 [20] Yang S H, Huh J, Jo W H. Effect of solvent polarity on the initiation
and the propagation of ethylene polymerization with constrained
(3)对聚合产物进行红外和 DSC 测试分析, geometry catalyst/MAO catalytic system: a density functional study
表明所得聚乙烯具有线型结构特征。 with the conductor-like screening model[J]. Macromolecules, 2005,
38(4): 1402-1409.
以上研究工作表明芳氧亚胺锆络合物合成路线 [21] Xie Kan (谢侃), Chen Dongmei (陈冬梅), Cai Xia (蔡霞), et al.
Study on the practical characterization of the microstructure of
简便,制备成本较低,对乙烯聚合表现出较高的催 polyethylene by infrared spectroscopy[J]. China Synthetic Resin and
Plastics (合成树脂及塑料), 2005, 22(1): 48-52.
化活性,所得聚合物的分子量可调控,是一类较适 [22] Chen J, Huang Y, Li Z, et al. Synthesis of iron, cobalt, chromium,
copper and zinc complexes with bulky bis (imino) pyridyl ligands
宜工业应用的单活性超高分子量聚乙烯催化剂。后 and their catalytic behaviors in ethylene polymerization and vinyl
polymerization of norbornene[J]. J Mol Catal A: Chem, 2006,
期工作将进一步优化催化剂结构,研究催化聚合机 259(2): 133-141.