Page 87 - 201807
P. 87
第 7 期 吴红梅,等: 三元有机-钴大环化合物的组装及其识别性能 ·1155·
[10] Friscic T. Supramolecular concepts and new techniques in hybrid metal-organic frameworks for asymmetric dihydroxylation of
mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic olefins [J]. Journal of the American Chemical Society, 2013, 135(28):
frameworks [J]. Chemical Society Reviews, 2012, 41(9): 3493-3510. 10186-10189.
[11] Koberl M, Cokoja M, Herrmann W A. From molecules to materials: [16] Han Q, Qi B, Ren W, et al. Polyoxometalate-based homochiral
Molecular paddle-wheel synthons of macromolecules, cage metal-organic frameworks for tandem asymmetric transformation of
compounds and metal-organic frameworks [J]. Dalton Transactions, cyclic carbonates from olefins [J]. Nature Communications, 2015, 6:
2011, 40(26): 6834-6859. 10007.
[12] Bunzen J, Iwasa J, Bonakdarzadeh P, et al. Self-Assembly of [17] Sun W, Guo S G, Hu C, et al. Recent development of chemosensors
M 24L 48polyhedra based on empirical prediction [J]. Angewandte based on cyanine platforms [J]. Chemical Reviews, 2016, 116(14):
Chemie International Edition, 2012, 51(13): 3161-3163. 7768-7817.
[13] Sun Q F, Sato S, Fujita M. An M 18L 24 stellated cuboctahedron [18] He C, Lin Z H, He Z, et al. Metal-Tunable nanocages as artificial
through post-stellation of an M 12L 24 core [J]. Nature Chemistry, chemosensors [J]. Angewandte Chemie International Edition, 2008,
2012, 4: 330-333. 47(5): 877-881.
[14] Cohen S M. Postsynthetic methods for the functionalization of metal- [19] Wang J, Wu H M, He C, et al. Metal-organic cyclohelicates as optical
organic frameworks [J]. Chemical Reviews, 2012, 112(2): 970-1000. receptors for glutathione: syntheses, structures, and host-guest
[15] Han Q X, He C, Zhao M, et al. Engineering chiral polyoxometalate behaviors [J]. Chemistry-an Asian Journal, 2011, 6(5): 1225-1233.
(上接第 1148 页) [13] Padhi A K, Archibald W B, Nanjundaswamy K S, et al. Ambient and
2+
3+
high-pressure structures of LiMnVO 4 and its Mn /Mn redox
参考文献: energy [J]. Journal of Solid State Chemistry, 1997, 128(2): 267-272.
[14] Kitajou A, Yoshida J, Nakanishi S, et al. Capacity improvement by
[1] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition metal
deficit of transition metals in inverse spinel LiNi 1/3Co 1/3Mn 1/3VO 4
oxides as negative electrode materials for lithium-ion batteries [J].
cathodes [J]. Journal of Power Sources, 2016, 302: 240-246.
Nature, 2000, 407(6803): 496-499.
[15] Cho J, Hong Y, Kang Y. Design and synthesis of bubble-nanorod-
[2] Fu F, Yao Y, Wang H, et al. Structure dependent electrochemical
structured Fe 2O 3-carbon nanofibers as advanced anode material for
performance of Li-rich layered oxides in lithium-ion batteries [J].
Li-ion batteries[J]. ACS Nano, 2015, 9(4): 4026-4035.
Nano Energy, 2017, 35: 370-378.
[16] Aravindan V, Chuiling W, Reddy M V, et al. Carbon coated
[3] Wu L, Wang Z, Long Y, et al. Multishelled Ni xCo 3-xO 4 hollow
nano-LiTi 2(PO 4) 3 electrodes for non-aqueous hybrid supercapacitors
microspheres derived from bimetal-organic frameworks as anode
[J]. Physical Chemistry Chemical Physics, 2012, 14(16): 5808-5814.
materials for high-performance lithium-ion batteries[J]. Small, 2017,
[17] Shi Nannan (史楠楠), Jiang Xue (姜雪), Zhang Ying (张莹),et al.
13(17): 1604270.
Preparation and performance of N-doped carbon coated Li 4Ti 5O 12 as
[4] Niu C, Huang M, Wang P, et al. Carbon-supported and nanosheet-
anode material for lithium-ion batteries [J]. Chemical Journal of
assembled vanadium oxide microspheres for stable lithium-ion battery
Chinese Universities (高等学校化学学报), 2015, 36(5): 981-988.
anodes [J]. Nano Research, 2016, 9(1): 128-138.
[18] Ji Xiaoxu (姬晓旭), Zhao Qinghuai (赵庆怀), Wang Li (王丽), et al.
[5] Liu M, Su B, Tang Y, et al. Recent advances in nanostructured Synthesis and electrochemical performance of carbon-modified
vanadium oxides and composites for energy conversion [J].
Zn 2SnO 4 anode materials for lithium ion batteries [J]. Journal of
Advanced Energy Materials, 2017, 7(23): 1700885.
Synthetic Crystals (人工晶体学报), 2014, 43(6): 1535-1539.
[6] Cheng Hu ( 程琥 ), Liang Meifang ( 梁妹 芳 ). Synthesis and [19] Sha Y, Xu X, Li L, et al. Hierarchical carbon-coated acanthosphere-
electrochemical performance of SnO 2 nanospheres [J]. Fine like Li 4Ti 5O 12 microspheres for high-power lithium-ion batteries [J].
Chemicals (精细化工), 2017, 34(1): 16-19. Journal of Power Sources, 2016, 314: 18-27.
[7] Shirakawa J, Nakayama M, Ikuta H, et al. Lithium insertion/removal [20] Yang Tong (杨彤), Wang Wang (王旺), Zhang Guoheng (张国恒),
mechanism of LiCoVO 4 in lithium-ion cells [J]. Electrochemical and et al. Preparation and electrochemical performance of nano SnO 2/C
Solid-State Letters, 2004, 7(2): A27-A29. microsphere material [J]. Chinese Journal of Power Sources (电源技
[8] Li M, Yang X, Wang C, et al. Electrochemical properties and 术), 2017, 41(1): 7-11.
lithium-ion storage mechanism of LiCuVO 4 as an intercalation anode [21] Bhuvaneswari M S, Selvasekarapandian S, Kamishima O, et al.
material for lithium-ion batteries [J]. Journal of Materials Chemmistry Vibrational analysis of lithium nickel vanadate [J]. Journal of Power
A, 2014, 3(2): 586-592. Sources, 2005, 139(1): 279-283.
[9] Si Yuchang (司玉昌), Qiu Jingyi (邱景义), Wang Weikun (王纬坤), [22] Lin Y M, Paul R A, Adam H, et al. α-Fe 2O 3 nanorods as anode
et al. Research progress in lithium vanadium oxides as cathode material for lithium ion batteries [J]. Journal of Physical Chemistry
materials [J]. Rare Metal Materials and Engineering (稀有金属材料 Letters, 2011, 2(22): 2885-2891.
与工程), 2013, 42(5): 1096-1100. [23] Cui C, Sun X, Li X, et al. Carbon nanospheres as an anode material
[10] Cui Chaojun (崔朝军), Wu Guangming (吴广明), Zhang Mingxia forlithium ion batteries with excellent rate capability [J]. RSC
(张明霞), et al. Synthesis and characterizations of lithium vanadium Advances, 2015, 5(68): 55348-55352.
oxide nanotubes[J]. Journal of inorganic materials (无机材料学报), [24] Bai J, Li X, Liu G, et al. Unusual formation of ZnCo 2O 4 3D
2009, 24(4): 787-792. hierarchical twin microspheres as a high-rate and ultralong-life
[11] Lu C H, Lee W C, Liou S J, et al. Hydrothermal synthesis of lithium-ion battery anode material [J]. Advanced Functional
LiNiVO 4 cathode material for lithium ion batteries [J]. Journal of Materials, 2014, 24(20): 3012-3020.
Power Sources, 1999, 81/82: 696-699. [25] Li Wei (李伟), Fu Xiaoqing (傅晓晴). Effect of carbon content on
[12] Lin Y, Xiao F, Gao S. A new anode material LiZnVO 4: synthesis and properties of LiFePO 4/C [J]. Chinese Journal of Power Sources (电源
electrochemical measurements[J]. Ionics, 2013, 19(3): 391-394. 技术), 2017, 41(5): 678-680.