Page 118 - 精细化工2019年第12期
P. 118
·2446· 精细化工 FINE CHEMICALS 第 36 卷
shift reaction over Cu/ZrO 2 from first principles[J]. Journal of Cu/ZnO/ZrO 2 catalysts prepared via a route of solid-state reaction[J].
Physical Chemistry C, 2010, 114(18): 8423-8430. Catalysis Communications, 2011, 12(12): 1095-1098.
[4] Agrell J, Birgersson H, Boutonnet M, et al. Production of hydrogen [15] Ma Z, Yang C, Wei W, et al. Catalytic performance of copper
from methanol over Cu/ZnO catalysts promoted by ZrO 2 and supported on zirconia polymorphs for CO hydrogenation[J]. Journal
Al 2O 3[J]. Journal of Catalysis, 2003, 219(2): 389-403. of Molecular Catalysis A: Chemical, 2005, 231(1/2): 75-81.
[5] Sato A G, Volanti D P, Meira D M, et al. Effect of the ZrO 2 phase on [16] Zhang Y, Chen C, Lin X, et al. CuO/ZrO 2 catalysts for water-gas
the structure and behavior of supported Cu catalysts for ethanol shift reaction: Nature of catalytically active copper species[J].
conversion[J]. Journal of Catalysis, 2013, 307: 1-17. International Journal of Hydrogen Energy, 2014, 39(8): 3746-3754.
[6] Freitas I C, Damyanova S, Oliveira D C, et al. Effect of Cu content [17] Witoon T, Chalorngtham J, Dumrongbunditkul P, et al. CO 2
on the surface and catalytic properties of Cu/ZrO 2 catalyst for ethanol hydrogenation to methanol over Cu/ZrO 2 catalysts: Effects of
dehydrogenation[J]. Journal of Molecular Catalysis A: Chemical, zirconia phases[J]. Chemical Engineering Journal, 2016, 293:
2014, 381: 26-37. 327-336.
[7] Sato A G, Volanti D P, de Freitas I C, et al. Site-selective ethanol [18] Yang Yunquan (杨运泉), Duan Zhengkang (段正康), Liu Wenying(刘
conversion over supported copper catalysts[J]. Catalysis Communications, 文英 ), et al. Reaction kinetics of monoethanolamine catalyzed
2012, 26: 122-126. dehydrogenation to sodium aminoacetate [J]. Chemical Reaction
[8] Miao Baoji (苗保记), Zhang Meng (张猛), Xia Yi (夏熠). Infrared Engineering and Technology (化学反应工程与工艺), 2001, 17(3):
spectrum analysis of nanosized crystals of yttria stabilized zirconia 210-215.
(YSZ)[J]. Transactions of Materials and Heat Treatment(材料热处理 [19] Yang Asan (杨阿三), Pan Yanfeng (潘炎烽), Sun Qin (孙勤), et al.
学报), 2017, 38(3): 29-33. Reaction kinetics of dehydrogenation of diethanolamine[J]. Journal
[9] Dongare M K, Dongare A M, Tare V B, et al. Synthesis and of Chemical Engineering of Chinese Universities(高校化学工程学
characterization of copper-stabilized zirconia as an anode material 报), 2010, 24(4): 590-595.
for SOFC[J]. Solid State Ionics, 2002, 152: 455-462. [20] Mokhtar M, Basahel S N Ali. Effect of synthesis methods for
[10] Ardizzone S, Bianchi C L. XPS characterization of sulphated mesoporous zirconia on its structural and textural properties[J].
zirconia catalysts: the role of iron[J]. Surface & Interface Analysis, Journal of Materials Science, 2013, 48(6): 2705-2713.
2015, 30(1): 77-80. [21] Neurock M, Tao Zhiyuan, Chemburkar A. Theoretical insights into
[11] Zonetti P C, Celnik J, Letichevsky S, et al. Chemicals from the sites and mechanisms for base catalyzed esterification and aldol
ethanol-the dehydrogenative route of the ethyl acetate one-pot condensation reactions over Cu[J]. Faraday Discuss, 2017, 197:
synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2011, 59-86.
334(1/2): 29-34. [22] Reis P P P, Zonetti P C, Passos F B, et al. Acetic acid synthesis from
[12] Xin Qin (辛勤), Luo Mengfei (罗孟飞). Modern catalytic research ethanol: describing the synergy between PdO and m-ZrO 2[J].
method[M]. Beijing: Science Press (科学出版社), 2009: 16-21. Catalysis Letters, 2017, 147(4): 821-827.
[13] Ribeiro N, Souza M, Schmal M. Combustion synthesis of copper [23] Letichevsky S, Zonetti P C, Reis P P P, et al. The role of m-ZrO 2 in
catalysts for selective CO oxidation[J]. Journal of Power Sources, the selective oxidation of ethanol to acetic acid employing
2008, 179(1): 329-334. PdO/m-ZrO 2[J]. Journal of Molecular Catalysis A: Chemical, 2015,
[14] Guo X, Mao D, Lu G, et al. CO 2 hydrogenation to methanol over 410: 177-183.
(上接第 2437 页) [18] Shi L, He Z, Liu S. MoS 2 quantum dots embedded in g-C 3N 4
frameworks: A hybrid 0D-2D heterojunction as an efficient
[11] Yan Xin (阎鑫), Lu Jinhua (卢锦花), Hui Xiaoyan (惠小艳), et al. visible-light driven photocatalyst[J]. Applied Surface Science, 2018,
Preparation and visible light photocatalytic property of g-C 3N 4/MoS 2 457(11): 30-40.
nanosheets/GO ternary composite photocatalyst[J]. Journal of [19] Zheng D, Zhang G, Hou Y, et al. Layering MoS 2 on soft hollow
Inorganic Materials (无机材料学报), 2018, 33(5): 515-520. g-C 3N 4 nanostructures for photocatalytic hydrogen evolution[J].
[12] Wu Chaojun (吴朝军), Yin Mingcai (尹明彩), Zhang Shangqing (张 Applied Catalysis A: General, 2016, 521(6): 2-8.
尚青), et al. Preparation of composite catalyst MoS 2/g-C 3N 4 and
photocatalytic hydrogen production sensitized by CdSe quantum [20] Li X, Wang D, Cheng G, et al. Preparation of polyaniline-modified
dots[J]. Materials Reports (材料导报), 2017, 31(S1): 158-163. TiO 2 nanoparticles and their photocatalytic activity under visible
[13] Tan S, Xing Z, Zhang J, et al. Meso-g-C 3N 4/g-C 3N 4 nanosheets light illumination[J]. Applied Catalysis B: Environmental, 2008, 81
laminated homojunctions as efficient visible-light-driven photocatalysts[J]. (3/4): 267-273.
International Journal of Hydrogen Energy, 2017, 42(41): 25969- [21] Vattikuti S, Byon C. Hydrothermally synthesized ternary heterostructured
25979. MoS 2/Al 2O 3/g-C 3N 4 photocatalyst[J]. Materials Research Bulletin,
[14] Liu S J, Li F T, Li Y L, et al. Fabrication of ternary 2017, 96(3): 233-245.
g-C 3N 4/Al 2O 3/ZnO heterojunctions based on cascade electron [22] Peng W, Li X. Synthesis of MoS 2/g-C 3N 4 as a solar light-responsive
transfer toward molecular oxygen activation[J]. Applied Catalysis B: photocatalyst for organic degration[J]. Catalysis Communications,
Environmental, 2017, 212(9): 115-128. 2014, 49(4): 63-67.
[15] You Z, Su Y, Yu Y, et al. Preparation of g-C 3N 4 nanorod/InVO 4 [23] Tian L, Yang X, Cui X, et al. Fabrication of dual direct Z-scheme
hollow sphere composite with enhanced visible-light photocatalytic g-C 3N 4/MoS 2/Ag 3PO 4 photocatalyst and its oxygen evolution
activities[J]. Applied Catalysis B: Environmental, 2017, 213(9): performance[J]. Applied Surface Science, 2019, 463(1): 9-17.
127-135. [24] Bai J, Lv W, Ni Z, et al. Integrating MoS 2 on sulfur-doped porous
[16] Liu Q, Chen T, Guo Y, et al. Grafting Fe(Ⅲ) species on carbon g-C 3N 4 iostype heterojunction hybrids enhances visible-light
nanodots/Fe-doped g-C 3N 4 via interfacial charge transfer effect for photocatalytic performance[J]. Journal of Alloys and Compounds,
highly improved photocatalytic performance[J]. Applied Catalysis B: 2018, 768(11): 766-774.
Environmental, 2017, 205(5): 173-181. [25] Liu Y, Zhang H, Ke J, et al. 0D (MoS 2)/2D (g-C 3N 4) heterojunctions
[17] Ma J, Yang Q, Wen Y, et al. Fe-g-C 3N 4/graphitized mesoporous in Z-scheme for enhanced photocatalytic and electrochemical
carbon composite as an effective Fenton-like catalyst in a wide pH hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018,
range[J]. Applied Catalysis B: Environmental, 2017, 201(3): 232-240. 228(7): 64-74.