Page 118 - 精细化工2019年第12期
P. 118

·2446·                            精细化工   FINE CHEMICALS                                  第 36 卷

                 shift  reaction  over  Cu/ZrO 2  from  first  principles[J].  Journal  of   Cu/ZnO/ZrO 2 catalysts prepared via a route of solid-state reaction[J].
                 Physical Chemistry C, 2010, 114(18): 8423-8430.   Catalysis Communications, 2011, 12(12): 1095-1098.
            [4]   Agrell J, Birgersson H, Boutonnet M, et al. Production of hydrogen   [15]  Ma  Z,  Yang  C,  Wei  W,  et al.  Catalytic  performance  of  copper
                 from  methanol  over  Cu/ZnO  catalysts  promoted  by  ZrO 2  and   supported on zirconia polymorphs for CO hydrogenation[J]. Journal
                 Al 2O 3[J]. Journal of Catalysis, 2003, 219(2): 389-403.   of Molecular Catalysis A: Chemical, 2005, 231(1/2): 75-81.
            [5]   Sato A G, Volanti D P, Meira D M, et al. Effect of the ZrO 2 phase on   [16]  Zhang  Y,  Chen  C,  Lin  X,  et al.  CuO/ZrO 2  catalysts  for  water-gas
                 the  structure  and  behavior  of  supported  Cu  catalysts  for  ethanol   shift  reaction:  Nature  of  catalytically  active  copper  species[J].
                 conversion[J]. Journal of Catalysis, 2013, 307: 1-17.   International Journal of Hydrogen Energy, 2014, 39(8): 3746-3754.
            [6]   Freitas I C, Damyanova S, Oliveira D C, et al. Effect of Cu content   [17]  Witoon  T,  Chalorngtham  J,  Dumrongbunditkul  P,  et al.  CO 2
                 on the surface and catalytic properties of Cu/ZrO 2 catalyst for ethanol   hydrogenation  to  methanol  over  Cu/ZrO 2  catalysts:  Effects  of
                 dehydrogenation[J].  Journal  of  Molecular  Catalysis  A:  Chemical,   zirconia  phases[J].  Chemical  Engineering  Journal,  2016,  293:
                 2014, 381: 26-37.                                 327-336.
            [7]   Sato A G, Volanti D P, de Freitas I C, et al. Site-selective ethanol   [18]  Yang Yunquan (杨运泉), Duan Zhengkang (段正康), Liu Wenying(刘
                 conversion over supported copper catalysts[J]. Catalysis Communications,   文英 ),  et al.  Reaction  kinetics  of  monoethanolamine  catalyzed
                 2012, 26: 122-126.                                dehydrogenation  to  sodium  aminoacetate  [J].  Chemical  Reaction
            [8]   Miao Baoji (苗保记), Zhang Meng (张猛), Xia Yi (夏熠). Infrared   Engineering  and  Technology  (化学反应工程与工艺),  2001,  17(3):
                 spectrum analysis of nanosized crystals of yttria stabilized zirconia   210-215.
                 (YSZ)[J]. Transactions of Materials and Heat Treatment(材料热处理  [19]  Yang Asan (杨阿三), Pan Yanfeng (潘炎烽), Sun Qin (孙勤), et al.
                 学报), 2017, 38(3): 29-33.                          Reaction  kinetics  of  dehydrogenation  of  diethanolamine[J].  Journal
            [9]   Dongare  M  K,  Dongare  A  M,  Tare  V  B,  et al.  Synthesis  and   of  Chemical  Engineering  of  Chinese  Universities(高校化学工程学
                 characterization  of  copper-stabilized  zirconia  as  an  anode  material   报), 2010, 24(4): 590-595.
                 for SOFC[J]. Solid State Ionics, 2002, 152: 455-462.   [20]  Mokhtar  M,  Basahel  S  N  Ali.  Effect  of  synthesis  methods  for
            [10]  Ardizzone  S,  Bianchi  C  L.  XPS  characterization  of  sulphated   mesoporous  zirconia  on  its  structural  and  textural  properties[J].
                 zirconia catalysts: the role of iron[J]. Surface & Interface Analysis,   Journal of Materials Science, 2013, 48(6): 2705-2713.
                 2015, 30(1): 77-80.                           [21]  Neurock M, Tao Zhiyuan, Chemburkar A. Theoretical insights into
            [11]  Zonetti  P  C,  Celnik  J,  Letichevsky  S,  et al.  Chemicals  from   the sites and mechanisms for base catalyzed esterification and aldol
                 ethanol-the  dehydrogenative  route  of  the  ethyl  acetate  one-pot   condensation  reactions  over  Cu[J].  Faraday  Discuss,  2017,  197:
                 synthesis[J].  Journal  of  Molecular  Catalysis  A:  Chemical,  2011,   59-86.
                 334(1/2): 29-34.                              [22]  Reis P P P, Zonetti P C, Passos F B, et al. Acetic acid synthesis from
            [12]  Xin  Qin  (辛勤),  Luo  Mengfei  (罗孟飞).  Modern  catalytic  research   ethanol:  describing  the  synergy  between  PdO  and  m-ZrO 2[J].
                 method[M]. Beijing: Science Press (科学出版社), 2009: 16-21.   Catalysis Letters, 2017, 147(4): 821-827.
            [13]  Ribeiro  N,  Souza  M,  Schmal  M.  Combustion  synthesis  of  copper   [23]  Letichevsky S, Zonetti P C, Reis P P P, et al. The role of m-ZrO 2 in
                 catalysts  for  selective  CO  oxidation[J].  Journal  of  Power  Sources,   the  selective  oxidation  of  ethanol  to  acetic  acid  employing
                 2008, 179(1): 329-334.                            PdO/m-ZrO 2[J]. Journal of Molecular Catalysis A: Chemical, 2015,
            [14]  Guo  X,  Mao  D,  Lu  G,  et al.  CO 2  hydrogenation  to  methanol over   410: 177-183.

            (上接第 2437 页)                                       [18]  Shi  L,  He  Z,  Liu  S.  MoS 2  quantum  dots  embedded  in  g-C 3N 4
                                                                   frameworks:  A  hybrid  0D-2D  heterojunction  as  an  efficient
            [11]  Yan Xin (阎鑫), Lu Jinhua (卢锦花), Hui Xiaoyan (惠小艳), et al.   visible-light driven photocatalyst[J]. Applied Surface Science, 2018,
                 Preparation and visible light photocatalytic property of g-C 3N 4/MoS 2   457(11): 30-40.
                 nanosheets/GO  ternary  composite  photocatalyst[J].  Journal  of   [19]  Zheng  D,  Zhang  G,  Hou  Y,  et al.  Layering  MoS 2  on  soft  hollow
                 Inorganic Materials (无机材料学报), 2018, 33(5): 515-520.   g-C 3N 4  nanostructures  for  photocatalytic  hydrogen  evolution[J].
            [12]  Wu Chaojun (吴朝军), Yin Mingcai (尹明彩), Zhang Shangqing (张  Applied Catalysis A: General, 2016, 521(6): 2-8.
                 尚青),  et al.  Preparation  of  composite  catalyst  MoS 2/g-C 3N 4  and
                 photocatalytic  hydrogen  production  sensitized  by  CdSe  quantum   [20]  Li X, Wang D, Cheng G, et al. Preparation of polyaniline-modified
                 dots[J]. Materials Reports (材料导报), 2017, 31(S1): 158-163.   TiO 2  nanoparticles  and  their  photocatalytic  activity  under  visible
            [13]  Tan  S,  Xing  Z,  Zhang  J,  et al.  Meso-g-C 3N 4/g-C 3N 4  nanosheets   light illumination[J]. Applied Catalysis B: Environmental, 2008, 81
                 laminated homojunctions as efficient visible-light-driven photocatalysts[J].   (3/4): 267-273.
                 International  Journal  of  Hydrogen  Energy,  2017,  42(41):  25969-   [21]  Vattikuti S, Byon C. Hydrothermally synthesized ternary heterostructured
                 25979.                                            MoS 2/Al 2O 3/g-C 3N 4  photocatalyst[J].  Materials  Research  Bulletin,
            [14]  Liu S  J,  Li F  T,  Li Y L,  et al.  Fabrication  of  ternary   2017, 96(3): 233-245.
                 g-C 3N 4/Al 2O 3/ZnO  heterojunctions  based  on  cascade  electron   [22]  Peng W, Li X. Synthesis of MoS 2/g-C 3N 4 as a solar light-responsive
                 transfer toward molecular oxygen activation[J]. Applied Catalysis B:   photocatalyst  for  organic  degration[J].  Catalysis  Communications,
                 Environmental, 2017, 212(9): 115-128.             2014, 49(4): 63-67.
            [15]  You  Z,  Su  Y,  Yu  Y,  et al.  Preparation  of  g-C 3N 4  nanorod/InVO 4   [23]  Tian L, Yang X, Cui X, et al. Fabrication of dual direct Z-scheme
                 hollow sphere composite with enhanced visible-light photocatalytic   g-C 3N 4/MoS 2/Ag 3PO 4  photocatalyst  and  its  oxygen  evolution
                 activities[J].  Applied  Catalysis  B:  Environmental,  2017,  213(9):   performance[J]. Applied Surface Science, 2019, 463(1): 9-17.
                 127-135.                                      [24]  Bai J, Lv W, Ni Z, et al. Integrating MoS 2 on sulfur-doped porous
            [16]  Liu  Q,  Chen  T,  Guo  Y,  et al.  Grafting  Fe(Ⅲ)  species  on  carbon   g-C 3N 4  iostype  heterojunction  hybrids  enhances  visible-light
                 nanodots/Fe-doped  g-C 3N 4  via  interfacial  charge  transfer  effect  for   photocatalytic  performance[J].  Journal  of  Alloys  and  Compounds,
                 highly improved photocatalytic performance[J]. Applied Catalysis B:   2018, 768(11): 766-774.
                 Environmental, 2017, 205(5): 173-181.         [25]  Liu Y, Zhang H, Ke J, et al. 0D (MoS 2)/2D (g-C 3N 4) heterojunctions
            [17]  Ma  J,  Yang  Q,  Wen  Y,  et al.  Fe-g-C 3N 4/graphitized  mesoporous   in  Z-scheme  for  enhanced  photocatalytic  and  electrochemical
                 carbon composite as an effective Fenton-like catalyst in a wide pH   hydrogen  evolution[J].  Applied  Catalysis  B:  Environmental,  2018,
                 range[J]. Applied Catalysis B: Environmental, 2017, 201(3): 232-240.   228(7): 64-74.
   113   114   115   116   117   118   119   120   121   122   123