Page 114 - 精细化工2020年第2期
P. 114
·316· 精细化工 FINE CHEMICALS 第 37 卷
的吸附,因此,失活后的催化剂 Ni-PS-AEH-400 经 quinoline[J]. Applied Catalysis A: General, 2013, 467: 310-314.
焙烧还原,催化剂加氢活性可以得到再生。 [5] Gong Y, Zhang P, Xu X, et al. A novel catalyst Pd@ompg-C 3N 4 for
highly chemoselective hydrogenation of quinoline under mild
conditions[J]. Journal of Catalysis, 2013, 279: 272-280.
3 结论 [6] Zhang L, Wang X, Xue Y, et al. Cooperation between the surface
hydroxyl groups of Ru-SiO 2@mSiO 2 and water for good catalytic
本文采用不同方法制得了负载量为 10%的镍基 performance for hydrogenation of quinoline[J]. Catalysis Science &
Technology, 2014, 4: 1939-1948.
纳米催化剂,并考察了不同制备方法对催化剂结构
[7] Fan G, Wu J. Mild hydrogenation of quinoline to decahydroquinoline
和催化喹啉加氢反应性能的影响,结合催化剂表征 over rhodium nanoparticles entrapped in aluminum oxy-
和活性测试,得出如下结论: hydroxide[J]. Catalysis Communications, 2013, 31: 81-85.
[8] Chu Xiaoning (褚晓宁), Niu Libo (牛立博), Chen Bo (陈波), et al.
(1)采用蒸氨水热法制备的镍硅酸盐衍生的催 Green synthesis of 4-methoxycyclohexanone[J]. Fine Chemicals (精
化剂 Ni-PS-AEH-400 在喹啉加氢制备 1,2,3,4-四氢 细化工), 2018, 35(2): 349-356.
喹啉反应中具有良好的催化活性,在反应温度 [9] Bian Z, Li Z, Jangam A, et al. A highly active and stable Ni-Mg
phyllosilicatenanotubular catalyst for ultrahigh temperature water-gas
100 ℃、氢气压力 3 MPa 及反应时间 120 min 的条 shift reaction[J]. Chemical Communications, 2015, 51: 16324-16326.
件下,喹啉的转化率可达 99.0%,目标产物 1,2,3,4- [10] Sivaiah M V, Petit S, Beaufort M F, et al. Nickel based catalysts
derived from hydrothermally synthesized 1 ∶ 1 and 2 ∶ 1
四氢喹啉的收率可达 95%以上。 phyllosilicatesas precursors for carbon dioxide reforming of
(2)催化剂表征结果证明,在 Ni 质量分数相差 methane[J]. Microporous Mesoporous Mater, 2011, 140: 69-80.
不大的前提下,与 Ni/SiO 2 -IMP 相比,Ni-PS-AEH- [11] Kong X, Zhu Y, Zheng H, et al. Ni nanoparticles inlaid nickel
phyllosilicate as a metal-acid bifunctional catalyst for low-
400 具有较高的比表面积、孔体积和金属分散度, temperature hydrogenolysis reactions[J]. ACS Catalysis, 2015, 5(10):
这得益于 Ni-PS-AEH-400 前驱体镍硅酸盐纤维层状 5914-5920.
[12] Zhang C, Yue H, Huang Z, et al. Hydrogen production via steam
结构和催化剂中 Ni 物种与载体的强相互作用,从而
reforming of ethanol on phyllosilicate-derived Ni/SiO 2: Enhanced
抑制了活性组分的团聚,提高了催化剂加氢活性。 metal-support interaction and catalytic stability[J]. ACS Sustainable
(3)催化剂稳定性实验结果表明,催化剂循环 Chemistry & Engineering, 2013, 1: 161-173.
[13] Zhu S, Gao X, Zhu Y, et al. A highly efficient and robust Cu/SiO 2
使用 5 次后仍具有良好的活性,6 次使用后活性明 catalyst prepared by the ammonia evaporation hydrothermal method
显下降,喹啉的转化率降至 60%左右。TEM 和 ICP for glycerol hydrogenolysis to 1, 2-propanediol[J]. Catalysis Science
结果显示,使用 6 次后催化剂表面活性组分并没有 & Technology, 2015, 5: 1169-1180.
[14] Wang X, Zhu S, Wang S, et al. Ni nanoparticles entrapped in nickel
明显的团聚和流失,催化剂失活的主要原因是底物/ phyllosilicate for selective hydrogenation of guaiacol to
产物在金属表面吸附,经焙烧还原后,催化剂活性 2-methoxycyclohexanol[J]. Applied Catalysis A: General, 2018, 568:
231-241.
得到再生。
[15] Hoffer B W, Crezee E, Mooijman P R M, et al. Carbon supported Ru
(4)镍硅酸盐衍生催化剂具有良好的催化性 catalysts as promising alternative for Raney-type Ni in the selective
能,有关制备方法和条件对硅酸盐衍生的催化剂结 hydrogenation of d-glucose[J]. Catalysis Today, 2003, 79(80): 35-41.
[16] Wang M, Qian X, Xie L, et al. Synthesis of a Ni phyllosilicate with
构和性能的研究尚不完善。本实验室接下来将进一 controlled morphology for deep hydrogenation of polycyclic aromatic
步研究制备条件与硅酸盐材料的各种形态之间的关 hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:
系及其对催化性能的影响。 1989-1997.
[17] Xia J, He G, Zhang L, et al. Hydrogenation of nitrophenols catalyzed
by carbon black-supported nickel nanoparticles under mild conditions[J].
参考文献: Applied Catalysis B: Environmental, 2016, 180: 408-415.
[1] Zhang F, Ma C, Chen S, et al. N-doped hierarchical porous carbon [18] Zhao Y, Li S, Wang Y, et al. Efficient tuning of surface copper
anchored tiny Pd NPs: A mild and efficient quinolines selective species of Cu/SiO 2 catalyst for hydrogenation of dimethyl oxalate to
hydrogenation catalyst[J]. Molecular Catalysis, 2015, 32(12): ethylene glycol[J]. Chemical Engineering Journal, 2017, 313: 759-
1382-1387. 768.
[2] Shi Tianwei (施天伟), Yan Xinhuan (严新焕), Wang Junpeng (王骏 [19] Cao Y, Niu L, Wen X, et al. Novel layered double hydroxide/
鹏), et al. Preparation of Ru/C catalyst and its application in oxide-coated nickel-based core-shell nanocomposites for benzonitrile
quinoline hydrogenation[J]. Fine Chemicals (精细化工), 2015, selective hydrogenation: An interesting water switch[J]. Journal of
32(12): 1382-1387. Catalysis, 2016, 339: 9-13.
[3] Liu Chengyun (刘成运), Rong Zeming (荣泽明), Du Wenqiang (杜 [20] Zhou J, Ma H, Liu C, et al. Ni based catalysts supported on Ce
文强), et al. Selective hydrogenation of quinoline to prepare 1, 2, 3, modified MgAl spinel supports for high temperature syngas
4-tetraquinoline over highly dispersed [Pd-Pt]/C catalysts[J]. Fine methanation[J]. Catalysis Letters, 2019, 149(9): 2563-2574.
Chemicals (精细化工), 2013, 30(1): 36-40. [21] Yang L, Yu S, Peng C, et al. Semihydrogenation of phenylacetylene
[4] Sun B, Khan F, Vallat A, et al. NanoRu@hectorite: A heterogeneous over nonprecious Ni-based catalysts supported on AlSBA-15[J].
catalyst with switchable selectivity for the hydrogenation of Journal of Catalysis, 2019, 370: 310-320.