Page 114 - 精细化工2020年第2期
P. 114

·316·                             精细化工   FINE CHEMICALS                                  第 37 卷

            的吸附,因此,失活后的催化剂 Ni-PS-AEH-400 经                         quinoline[J]. Applied Catalysis A: General, 2013, 467: 310-314.
            焙烧还原,催化剂加氢活性可以得到再生。                                [5]   Gong Y, Zhang P, Xu X, et al. A novel catalyst Pd@ompg-C 3N 4 for
                                                                   highly  chemoselective  hydrogenation  of  quinoline  under  mild
                                                                   conditions[J]. Journal of Catalysis, 2013, 279: 272-280.
            3   结论                                             [6]   Zhang  L,  Wang  X,  Xue  Y,  et al.  Cooperation  between  the  surface
                                                                   hydroxyl  groups  of  Ru-SiO 2@mSiO 2  and  water  for  good  catalytic
                 本文采用不同方法制得了负载量为 10%的镍基                            performance for hydrogenation of quinoline[J]. Catalysis Science &
                                                                   Technology, 2014, 4: 1939-1948.
            纳米催化剂,并考察了不同制备方法对催化剂结构
                                                               [7]   Fan G, Wu J. Mild hydrogenation of quinoline to decahydroquinoline
            和催化喹啉加氢反应性能的影响,结合催化剂表征                                 over  rhodium  nanoparticles  entrapped  in  aluminum  oxy-
            和活性测试,得出如下结论:                                          hydroxide[J]. Catalysis Communications, 2013, 31: 81-85.
                                                               [8]   Chu Xiaoning (褚晓宁), Niu Libo (牛立博), Chen Bo (陈波), et al.
                (1)采用蒸氨水热法制备的镍硅酸盐衍生的催                              Green synthesis of 4-methoxycyclohexanone[J]. Fine Chemicals (精
            化剂 Ni-PS-AEH-400 在喹啉加氢制备 1,2,3,4-四氢                    细化工), 2018, 35(2): 349-356.
            喹啉反应中具有良好的催化活性,在反应温度                               [9]   Bian  Z,  Li  Z,  Jangam  A,  et al.  A  highly  active  and  stable  Ni-Mg
                                                                   phyllosilicatenanotubular catalyst for ultrahigh temperature water-gas
            100 ℃、氢气压力 3  MPa 及反应时间 120 min 的条                     shift reaction[J]. Chemical Communications, 2015, 51: 16324-16326.
            件下,喹啉的转化率可达 99.0%,目标产物 1,2,3,4-                    [10]  Sivaiah M V,  Petit S,  Beaufort M F,  et al.  Nickel  based  catalysts
                                                                   derived  from  hydrothermally  synthesized  1 ∶ 1  and  2 ∶ 1
            四氢喹啉的收率可达 95%以上。                                       phyllosilicatesas  precursors  for  carbon  dioxide  reforming  of
                (2)催化剂表征结果证明,在 Ni 质量分数相差                           methane[J]. Microporous Mesoporous Mater, 2011, 140: 69-80.
            不大的前提下,与 Ni/SiO 2 -IMP 相比,Ni-PS-AEH-               [11]  Kong  X,  Zhu  Y,  Zheng  H,  et al.  Ni  nanoparticles  inlaid  nickel
                                                                   phyllosilicate  as  a  metal-acid  bifunctional  catalyst  for  low-
            400 具有较高的比表面积、孔体积和金属分散度,                               temperature hydrogenolysis reactions[J]. ACS Catalysis, 2015, 5(10):
            这得益于 Ni-PS-AEH-400 前驱体镍硅酸盐纤维层状                         5914-5920.
                                                               [12]  Zhang  C,  Yue  H,  Huang  Z,  et al.  Hydrogen  production  via  steam
            结构和催化剂中 Ni 物种与载体的强相互作用,从而
                                                                   reforming  of  ethanol  on  phyllosilicate-derived  Ni/SiO 2:  Enhanced
            抑制了活性组分的团聚,提高了催化剂加氢活性。                                 metal-support interaction and catalytic stability[J]. ACS Sustainable
                (3)催化剂稳定性实验结果表明,催化剂循环                              Chemistry & Engineering, 2013, 1: 161-173.
                                                               [13]  Zhu S, Gao X, Zhu Y, et al. A highly efficient and robust Cu/SiO 2
            使用 5 次后仍具有良好的活性,6 次使用后活性明                              catalyst prepared by the ammonia evaporation hydrothermal method
            显下降,喹啉的转化率降至 60%左右。TEM 和 ICP                           for glycerol hydrogenolysis to 1, 2-propanediol[J]. Catalysis Science
            结果显示,使用 6 次后催化剂表面活性组分并没有                               & Technology, 2015, 5: 1169-1180.
                                                               [14]  Wang X, Zhu S, Wang S, et al. Ni nanoparticles entrapped in nickel
            明显的团聚和流失,催化剂失活的主要原因是底物/                                phyllosilicate  for  selective  hydrogenation  of  guaiacol  to
            产物在金属表面吸附,经焙烧还原后,催化剂活性                                 2-methoxycyclohexanol[J]. Applied Catalysis A: General, 2018, 568:
                                                                   231-241.
            得到再生。
                                                               [15]  Hoffer B W, Crezee E, Mooijman P R M, et al. Carbon supported Ru
                (4)镍硅酸盐衍生催化剂具有良好的催化性                               catalysts as promising alternative for Raney-type Ni in the selective
            能,有关制备方法和条件对硅酸盐衍生的催化剂结                                 hydrogenation of d-glucose[J]. Catalysis Today, 2003, 79(80): 35-41.
                                                               [16]  Wang M, Qian X, Xie L, et al. Synthesis of a Ni phyllosilicate with
            构和性能的研究尚不完善。本实验室接下来将进一                                 controlled morphology for deep hydrogenation of polycyclic aromatic
            步研究制备条件与硅酸盐材料的各种形态之间的关                                 hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:
            系及其对催化性能的影响。                                           1989-1997.
                                                               [17]  Xia J, He G, Zhang L, et al. Hydrogenation of nitrophenols catalyzed
                                                                   by carbon black-supported nickel nanoparticles under mild conditions[J].
            参考文献:                                                  Applied Catalysis B: Environmental, 2016, 180: 408-415.
            [1]   Zhang F, Ma C, Chen S, et al. N-doped hierarchical porous carbon   [18]  Zhao  Y,  Li  S,  Wang  Y,  et al.  Efficient  tuning  of  surface  copper
                 anchored  tiny  Pd  NPs:  A  mild  and  efficient  quinolines  selective   species of Cu/SiO 2 catalyst for hydrogenation of dimethyl oxalate to
                 hydrogenation  catalyst[J].  Molecular  Catalysis,  2015,  32(12):   ethylene  glycol[J].  Chemical  Engineering  Journal,  2017,  313:  759-
                 1382-1387.                                        768.
            [2]   Shi Tianwei (施天伟), Yan Xinhuan (严新焕), Wang Junpeng (王骏  [19]  Cao  Y,  Niu  L,  Wen  X,  et al.  Novel  layered  double  hydroxide/
                 鹏),  et al.  Preparation  of  Ru/C  catalyst  and  its  application  in   oxide-coated nickel-based core-shell nanocomposites for benzonitrile
                 quinoline  hydrogenation[J].  Fine  Chemicals  (精细化工),  2015,   selective  hydrogenation:  An  interesting  water  switch[J].  Journal  of
                 32(12): 1382-1387.                                Catalysis, 2016, 339: 9-13.
            [3]   Liu Chengyun (刘成运), Rong Zeming (荣泽明), Du Wenqiang (杜  [20]  Zhou  J,  Ma  H,  Liu  C,  et al.  Ni  based  catalysts  supported  on  Ce
                 文强), et al. Selective hydrogenation of quinoline to prepare 1, 2, 3,   modified  MgAl  spinel  supports  for  high  temperature  syngas
                 4-tetraquinoline  over  highly  dispersed  [Pd-Pt]/C  catalysts[J].  Fine   methanation[J]. Catalysis Letters, 2019, 149(9): 2563-2574.
                 Chemicals (精细化工), 2013, 30(1): 36-40.         [21]  Yang L, Yu S, Peng C, et al. Semihydrogenation of phenylacetylene
            [4]   Sun B, Khan F, Vallat A, et al. NanoRu@hectorite: A heterogeneous   over  nonprecious  Ni-based  catalysts  supported  on  AlSBA-15[J].
                 catalyst  with  switchable  selectivity  for  the  hydrogenation  of     Journal of Catalysis, 2019, 370: 310-320.
   109   110   111   112   113   114   115   116   117   118   119