Page 154 - 《精细化工》2020年第3期
P. 154
·572· 精细化工 FINE CHEMICALS 第 37 卷
issues facing lithium metal for solid-state rechargeable batteries[J].
Journal of Power Sources, 2017, 353: 333-342.
[2] SHI J, XIONG H, YANG Y, et al. Nano-sized oxide filled composite
PEO/PMMA/P (VDF-HFP) gel polymer electrolyte for rechargeable
lithium and sodium batteries[J]. Solid State Ionics, 2018, 326: 136-144.
[3] ZHANG Jianjun (张建军), DONG Tiantian (董甜甜), YANG Jinfeng
(杨金凤), et al. Research progress, challenge and perspective of
all-solid- state polymer lithium batteries[J]. Energy Storage Science
and Technology (储能科学与技术), 2018, 7(5): 861-868.
[4] LIU L, WU X, LI T. Novel polymer electrolytes based on cationic
polyurethane with different alkyl chain length[J]. Journal of Power
Sources, 2014, 249: 397-404.
[5] IBRAHIM S, AHMAD A, MOHAMED N S. Characterization of
novel castor oil-based polyurethane polymer electrolytes[J]. Polymers,
2015, 7: 747-759.
[6] CHEN Ling (陈铃), LIU Yahui (刘亚辉), ZHOU Zhiwei (周志伟), et al.
Research progress of flame retardant polyether polyols for polyurethan[J].
Synthetic Fiber in China (合成纤维), 2019, 48(4): 17-20.
[7] LI Linshan (李琳珊), CHEN Yajun (陈雅君), JU Rui (鞠蕊), et al.
Research progress of phosphorus-containing flame retardant in
polyurethane[J]. Plastics (塑料), 2018, 47(3): 103-109.
[8] KAI Ling C, AUNG M M, RAYUNG M, et al. Performance of ionic
transport properties in vegetable oil-based polyurethane acrylate gel
polymer electrolyte[J]. ACS Omega, 2019, 4(2): 2554-2564.
[9] CONG Bing, SONG Youxin, REN Naiqing, et al. Polyethylene
glycol- based waterborne polyurethane as solid polymerelectrolyte for
all-solid- state lithium ion batteries[J]. Materials and Design, 2018, 142:
221-228.
[10] LI Yiwen (李一文). Research of organic phosphorus flameretardant
图 6 TPUP 基全固态电池的充放电曲线(a)和 TPUP 基 modified waterborne polyurethane[D]. Tianjin: Tianjin University
全固态电池的循环性能(b) (天津大学), 2013.
Fig. 6 Charge-discharge curve of all-solid-state lithium-ion [11] FAN Yifan (范一凡), LI Xiangmei (李向梅), YANG Rongjie (杨荣
杰 ). Application on intrinsically phosphorous flame retardant
battery based on TPUP(a) and cyclicing performance waterborne polyurethane and Intumescent fire-proofing coatings[J].
of all-solid-state lithium-ion battery based on TPUP(b) Polymer Materials Science & Engineering (高分子材料科学与工
程), 2017, 33(9): 133-140.
由图 6a、b 可知,LiFePO 4 /TPUP25%Li/Li 全固 [12] YANG Rong, WANG Bo, HAN Xiaofeng. et al. Synthesis and
characterization of flame retardant rigid polyurethane foam based on
态电池在 0.2、0.5 和 1.0 C 电流密度下的放电比容 a reactive flame retardant containing phosphazene and cyclophosphonate
量分别为 159、138 和 60 mA·h/g,库伦效率接近 [J]. Polymer Degradation and Stability, 2017, 144: 62-69.
[13] GUO Junhong (郭军红), WANG Xinyuan (王心远), LU Fuyou (路
100%。电池循环性能稳定,容量保持率良好。电池 富有), et al. Preparation and properties of phosphorus-containing
性能测试表明,以 TPUP 制备的固态电解质具有良 flame retardant waterborne polyurethane emulsion[J]. Fine
Chemicals (精细化工), 2015, 32(5): 578-582.
好的电化学性能,具有较好的应用前景。 [14] MILIAN Pila, RICARDO Carlos, EDUARDO PÉREZ Cappe, et al.
Effect of the LLTO nanoparticles on the conducting properties of
PEO-basedsolid electrolyte[J]. Solid State Sciences, 2019, 88: 41-47.
3 结论 [15] YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes
for high-performance lithium ion batteries[J]. Energy Storage
(1)以 FRC-6 为功能型阻燃剂,PBA 和 HDI Materials, 2016, 5: 139-164.
[16] XUE Z G, HE D, XIE X L. Poly (ethylene oxide)-based electrolytes
反应合成了热塑性阻燃聚氨酯(TPUP),TPUP 具有 for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,
3(38): 19218-19253.
良好的阻燃性能。 [17] XU C C, HUANG Y H, TANG L P, et al. Low-initial-modulus
(2)将 LiTFSI 与 TPUP 复合制得阻燃聚氨酯基 biodegradable polyurethane elastomers for soft tissue regeneration[J].
ACS Applied Material & Interfaces, 2017, 9(3): 2169-2180.
电解质,电解质的力学强度随着锂盐浓度的增大而 [18] NAIR J R, IMHOLT L, BRUNKLAUS G, et al. Lithium metal
下降,离子电导率随着锂盐浓度的增大而增大,锂盐 polymer electrolyte batteries: Opportunities and challenges[J]. The
Electrochemical Society Interface, 2019, 28(2): 55-61.
质量分数为 25%时制备的电解质(TPUP25%Li)综 [19] PERUMAL P, SELVASEKARAPANDIAN S, ABHILASH K P, et al.
合性能最优,拉伸强度为 2.09 MPa,80 ℃时离子 Impact of lithium chlorate salts on structural and electrical properties
of natural polymer electrolytes for all solid state lithium polymer
–4
电导率为 3.09×10 S/cm,电化学窗口为 4.5 V。 batteries[J]. Vacuum, 2018, 159: 277-281.
[20] JINISHA B, ANILKUMAR K M, MANOJ M, et al. Development of
(3)TPUP25%Li 固态电解质与 LiFePO 4 、锂片 a novel type of solid polymer electrolyte for solid statelithium battery
组装成全固态纽扣电池在 80 ℃、0.2 C 电流密度下 applications based on lithium enriched poly (ethyleneoxide) (PEO)/
poly (vinyl pyrrolidone) (PVP) blend polymer[J]. Electrochimica Acta,
放电比容量达到 159 mA·h/g。TPUP 基固态电解质 2017, 235: 210-222.
兼具较好的阻燃性能和电化学性能,具有较好的应 [21] LI Xin, WANG Zijian, LIN Hai, et al. Compositeelectrolytes of
pyrrolidone-derivatives-PEO enable to enhance performance of all solid
用前景。 state lithium-ion batteries[J]. Electrochimica Acta, 2019, 293: 25-29.
[22] MATHEW Deepa Elizabeth, GOPI Sivalingam, KATHIRESAN
参考文献: Murugavel, et al. Influence of MOF ligands on the electrochemical
and interfacialproperties of PEO-based electrolytes for all-solid-state
[1] MAUGER A, ARMAND M, JULIEN C M, et al. Challenges and lithium batteries[J]. Electrochimica Acta, 2019, 319: 189-200.