Page 44 - 《精细化工》2020年第7期
P. 44
·1326· 精细化工 FINE CHEMICALS 第 37 卷
Comparison of surface properties of silica xero- and hydrogels Part Ⅱ. Characterization of the synthesized monoliths by inverse
hydrothermally modified using mechanochemical, microwave and size exclusion Chromatography and scanning electron microscopy[J].
classical methods[J]. Colloids and Surfaces A: Physicochemical and Journal of Chromatography A, 2014, 1325: 247-255.
Engineering Aspects, 2016, 504(5): 139-153 [23] BACSKAY I, SEPSEY A, FELINGER A. Determination of the pore
[6] LANGSI V K, ASHU-ARRAH B A, GLENNON J D. Sub-2-μm size distribution of high-performance liquid chromatography
seeded growth mesoporous thin shell particles for high-performance stationary phases via inverse size exclusion chromatography[J].
liquid chromatography: Synthesis, functionalisation and Journal of Chromatography A, 2014, 1339: 110-117.
characterisation[J]. Journal of Chromatography A, 2015, 1402: [24] GOTO M, MCCOY B J. Inverse size-exclusion chromatography for
17-26. distributed pore and solute sizes[J]. Chemical Engineering Science,
[7] LIU T (刘韬). Design and protein adsorption mechanism of polymer- 2000, 55(4): 723-732.
grafted resins for hydrophobic charge-induction chromatography[D]. [25] OUSALEM M, ZHU X X, HRADIL J. Evaluation of the porous
Hangzhou: Zhejiang University (浙江大学), 2017. structures of new polymer packing materials by inverse size-
[8] LIU S, PENG J, ZHANG H, et al. Preparation of organic-silica exclusion chromatography[J]. Journal of Chromatography A, 2000,
hybrid monolithic columns via crosslinking of functionalized 903(1/2): 13-19.
mesoporous carbon nanoparticles for capillary liquid [26] LIU T, ANGELO J M, LIN D Q, et al. Characterization of
chromatography[J]. Journal of Chromatography A, 2017, 1498: dextran-grafted hydrophobic charge-induction resins: Structural
64-71. properties, protein adsorption and transport[J]. Journal of
[9] XIONG X Y ( 熊喜悦 ). Study of the preparation of several Chromatography A, 2017, 1517: 44-53.
monolithic columns with high selectivity[D]. Changsha: Hunan [27] ELWINGER F, WERNERSSON J, FURÓ I. Quantifying size
Normal University (湖南师范大学), 2013. exclusion by diffusion NMR: A versatile method to measure pore
[10] WANG Z X, MARCUS R K. Determination of pore size distributions access and pore size[J]. Analytical Chemistry, 2018, 90(19):
in capillary-channeled polymer fiber stationary phases by inverse 11431-11438.
size-exclusion chromatography and implications for fast protein [28] TASFIYATI A N, IFTITAH E D, SAKTI S P, et al. Evaluation of
separations[J]. Journal of Chromatography A, 2014, 1351: 82-89. glycidyl methacrylate-based monolith functionalized with weak
[11] ÖZTÜRK H B, POTTHAST A, ROSENAU T, et al. Changes in the anion exchange moiety inside 0.5 mm i.d. column for liquid
intra-and inter-fibrillar structure of lyocell (TENCEL®) fibers caused chromatographic separation of DNA[J]. Analytical Chemistry
by NaOH treatment[J]. Cellulose, 2009, 16(1): 37-52. Research, 2016, 7: 9-16.
[12] SUN Z L ( 孙中 良 ). Relationships between pore structure of [29] SEPSEY A, BACSKAY I, FELINGER A. Molecular theory of size
cellulosic fibers and dyeing behaviors of dyes[D]. Shanghai: exclusion chromatography for wide pore size distributions[J]. Journal
Donghua University (东华大学), 2014. of Chromatography A, 2014, 1331: 52-60.
[13] WANG G D, JIANG J C, SUN K, et al. An improved theoretical [30] SCHMITT K, WOIWODE U, KOHOUT M, et al. Comparison of
procedure for the pore-size analysis of activated carbon by gas small size fully porous particles and superficially porous particles of
adsorption[J]. Chinese Journal of Chemical Engineering, 2018, chiral anion-exchange type stationary phases in ultra-high
26(3): 551-559. performance liquid chromatography: Effect of particle and pore size
[14] VAJDA J, WEBER D, BREKEL D, et al. Size distribution analysis of on chromatographic efficiency and kinetic performance[J]. Journal of
influenza virus particles using size exclusion chromatography[J]. Chromatography A, 2018, 1569: 149-159.
Journal of Chromatography A, 2016, 1465: 117-125. [31] QIN L, LI S, ZHAI C, et al. Changes in the pore structure of lignite
[15] YAO Y, LENHOFF A M. Determination of pore size distributions of after repeated cycles of liquid nitrogen freezing as determined by
porous chromatographic adsorbents by inverse size-exclusion nitrogen adsorption and mercury intrusion[J]. Fuel, 2020, 267: 117214.
chromatography[J]. Journal of Chromatography A, 2004, 1037(1/2): [32] MAZSAROFF I, REGNIER F E. Phase ratio determination in an
273-282. ion-exchange column having pores partially accessible to proteins[J].
[16] SHEN Z (沈醉), LIN D Q (林东强), YAO S J (姚善泾). Journal of Chromatography A, 1998, 442(1): 15-28.
Determination of pore size distribution of porous media by inverse [33] FALLAHIANBIJAN F, GIGLIA S, CARBRELLO C, et al.
size-exclusion chromatography[J]. Journal of Chemical Industry and Quantitative analysis of internal flow distribution and pore
Engineering (化工学报), 2010, 61(4): 867-874. interconnectivity within asymmetric virus filtration membranes[J].
[17] URBAN J, EELTINK S, JANDERA P, et al. Characterization of Journal of Membrane Science, 2020, 595: 117578.
polymer-based monolithic capillary columns by inverse size- [34] CHEN Y ( 陈永 ). Preparation and characterization of porous
exclusion chromatography and mercury-intrusion porosimetry[J]. materials[M]. Hefei: University of Science and Technology of China
Journal of Chromatography A, 2008, 1182(2): 161-168. Press (中国科学技术大学出版社), 2012.
[18] YAO Y, LENHOFF A M. Pore size distributions of ion exchangers [35] CHEN L J (陈良健). Application of nitrogen adsorption method and
and relation to protein binding capacity[J]. Journal of mercury intrusion method to measure pore size of SCR denitration
Chromatography A, 2006, 1126(1/2): 107-119. catalyst[J]. Chemical Enterprise Management (化工管理), 2018,
[19] HO C C, ZYDNEY A L. Measurement of membrane pore 499(28): 201-203.
interconnectivity[J]. Journal of Membrane Science, 2000, 170(1): [36] CHEN J (陈捷), LU D Y (卢都友), LI K (李款), et al. Pore structure
101-112. characteristics of metakaolin-based geopolymers by nitrogen
[20] THOMAS H, DE NEUVILLE B C, STORTI G, et al. Role of adsorption method[J]. Journal of the Chinese Ceramic Society (硅酸
tentacles and protein loading on pore accessibility and mass transfer 盐学报), 2017, 45(8): 85-91.
in cation exchange materials for proteins[J]. Journal of [37] DE CASTRO A R, AGNAOU M, AHMADI-SÉNICHAULT A, et al.
Chromatography A, 2013, 1285: 48-56. Numerical porosimetry: Evaluation and comparison of yield stress
[21] MAIER R S, SCHURE M R. Transport properties and size exclusion fluids method, mercury intrusion porosimetry and pore network
effects in wide-pore superficially porous particles[J]. Chemical modelling approaches[J]. Computers & Chemical Engineering, 2020,
Engineering Science, 2018, 185: 243-255. 133: 106662.
[22] ALLAH A, PYELL U. Adamantyl-group containing mixed-mode
acrylamide-based continuous beds for capillary electrochromatography. (下转第 1428 页)