Page 44 - 《精细化工》2020年第7期
P. 44

·1326·                            精细化工   FINE CHEMICALS                                 第 37 卷

                 Comparison  of  surface  properties  of  silica  xero-  and  hydrogels   Part  Ⅱ.  Characterization  of  the  synthesized  monoliths  by  inverse
                 hydrothermally  modified  using  mechanochemical,  microwave  and   size exclusion Chromatography and scanning electron microscopy[J].
                 classical methods[J]. Colloids and Surfaces A: Physicochemical and   Journal of Chromatography A, 2014, 1325: 247-255.
                 Engineering Aspects, 2016, 504(5): 139-153    [23]  BACSKAY I, SEPSEY A, FELINGER A. Determination of the pore
            [6]   LANGSI  V  K,  ASHU-ARRAH  B  A,  GLENNON  J  D.  Sub-2-μm   size  distribution  of  high-performance  liquid  chromatography
                 seeded growth mesoporous thin shell particles for high-performance   stationary  phases  via  inverse  size  exclusion  chromatography[J].
                 liquid   chromatography:   Synthesis,   functionalisation   and   Journal of Chromatography A, 2014, 1339: 110-117.
                 characterisation[J].  Journal  of  Chromatography  A,  2015,  1402:   [24]  GOTO M, MCCOY B J. Inverse size-exclusion chromatography for
                 17-26.                                            distributed pore and solute sizes[J]. Chemical Engineering Science,
            [7]   LIU T (刘韬). Design and protein adsorption mechanism of polymer-   2000, 55(4): 723-732.
                 grafted resins for hydrophobic charge-induction chromatography[D].   [25]  OUSALEM  M,  ZHU  X  X,  HRADIL  J.  Evaluation  of  the  porous
                 Hangzhou: Zhejiang University (浙江大学), 2017.       structures  of  new  polymer  packing  materials  by  inverse  size-
            [8]   LIU  S,  PENG  J,  ZHANG  H,  et al.  Preparation  of  organic-silica   exclusion  chromatography[J].  Journal  of  Chromatography  A,  2000,
                 hybrid  monolithic  columns  via  crosslinking  of  functionalized   903(1/2): 13-19.
                 mesoporous   carbon   nanoparticles   for   capillary   liquid   [26]  LIU  T,  ANGELO  J  M,  LIN  D  Q,  et al.  Characterization  of
                 chromatography[J].  Journal  of  Chromatography  A,  2017,  1498:   dextran-grafted  hydrophobic  charge-induction  resins:  Structural
                 64-71.                                            properties,  protein  adsorption  and  transport[J].  Journal  of
            [9]   XIONG  X  Y  ( 熊喜悦 ).  Study  of  the  preparation  of  several   Chromatography A, 2017, 1517: 44-53.
                 monolithic  columns  with  high  selectivity[D].  Changsha:  Hunan   [27]  ELWINGER  F,  WERNERSSON  J,  FURÓ  I.  Quantifying  size
                 Normal University (湖南师范大学), 2013.                 exclusion  by  diffusion  NMR:  A  versatile  method  to  measure  pore
            [10]  WANG Z X, MARCUS R K. Determination of pore size distributions   access  and  pore  size[J].  Analytical  Chemistry,  2018,  90(19):
                 in  capillary-channeled  polymer  fiber  stationary  phases  by  inverse   11431-11438.
                 size-exclusion  chromatography  and  implications  for  fast  protein   [28]  TASFIYATI  A  N,  IFTITAH  E  D,  SAKTI  S  P,  et al.  Evaluation  of
                 separations[J]. Journal of Chromatography A, 2014, 1351: 82-89.    glycidyl  methacrylate-based  monolith  functionalized  with  weak
            [11]  ÖZTÜRK H B, POTTHAST A, ROSENAU T, et al. Changes in the   anion  exchange  moiety  inside  0.5  mm  i.d.  column  for  liquid
                 intra-and inter-fibrillar structure of lyocell (TENCEL®) fibers caused   chromatographic  separation  of  DNA[J].  Analytical  Chemistry
                 by NaOH treatment[J]. Cellulose, 2009, 16(1): 37-52.     Research, 2016, 7: 9-16.
            [12]  SUN  Z  L  ( 孙中 良 ).  Relationships  between  pore  structure  of   [29]  SEPSEY A, BACSKAY I, FELINGER A. Molecular theory of size
                 cellulosic  fibers  and  dyeing  behaviors  of  dyes[D].  Shanghai:   exclusion chromatography for wide pore size distributions[J]. Journal
                 Donghua University (东华大学), 2014.                  of Chromatography A, 2014, 1331: 52-60.
            [13]  WANG  G  D,  JIANG  J  C,  SUN  K,  et al.  An  improved  theoretical   [30]  SCHMITT  K,  WOIWODE  U,  KOHOUT  M,  et al.  Comparison  of
                 procedure  for  the  pore-size  analysis  of  activated  carbon  by  gas   small size fully porous particles and superficially porous particles of
                 adsorption[J].  Chinese  Journal  of  Chemical  Engineering,  2018,   chiral  anion-exchange  type  stationary  phases  in  ultra-high
                 26(3): 551-559.                                   performance liquid chromatography: Effect of particle and pore size
            [14]  VAJDA J, WEBER D, BREKEL D, et al. Size distribution analysis of   on chromatographic efficiency and kinetic performance[J]. Journal of
                 influenza  virus  particles  using  size  exclusion  chromatography[J].   Chromatography A, 2018, 1569: 149-159.
                 Journal of Chromatography A, 2016, 1465: 117-125.     [31]  QIN L, LI S, ZHAI C, et al. Changes in the pore structure of lignite
            [15]  YAO Y, LENHOFF A M. Determination of pore size distributions of   after  repeated  cycles  of  liquid  nitrogen  freezing  as  determined by
                 porous  chromatographic  adsorbents  by  inverse  size-exclusion   nitrogen adsorption and mercury intrusion[J]. Fuel, 2020, 267: 117214.
                 chromatography[J]. Journal of Chromatography A, 2004, 1037(1/2):   [32]  MAZSAROFF  I, REGNIER F E.  Phase  ratio determination  in an
                 273-282.                                          ion-exchange column having pores partially accessible to proteins[J].
            [16]  SHEN  Z  (沈醉), LIN D Q (林东强),  YAO  S  J  (姚善泾).   Journal of Chromatography A, 1998, 442(1): 15-28.
                 Determination of pore size distribution of porous media by inverse   [33]  FALLAHIANBIJAN  F,  GIGLIA  S,  CARBRELLO  C,  et al.
                 size-exclusion chromatography[J]. Journal of Chemical Industry and   Quantitative  analysis  of  internal  flow  distribution  and  pore
                 Engineering (化工学报), 2010, 61(4): 867-874.         interconnectivity  within  asymmetric  virus  filtration  membranes[J].
            [17]  URBAN  J,  EELTINK  S,  JANDERA  P,  et al.  Characterization  of   Journal of Membrane Science, 2020, 595: 117578.
                 polymer-based  monolithic  capillary  columns  by  inverse  size-   [34]  CHEN  Y  ( 陈永 ).  Preparation  and  characterization  of  porous
                 exclusion  chromatography  and  mercury-intrusion  porosimetry[J].   materials[M]. Hefei: University of Science and Technology of China
                 Journal of Chromatography A, 2008, 1182(2): 161-168.     Press (中国科学技术大学出版社), 2012.
            [18]  YAO Y, LENHOFF A M. Pore size distributions of ion exchangers   [35]  CHEN L J (陈良健). Application of nitrogen adsorption method and
                 and  relation  to  protein  binding  capacity[J].  Journal  of   mercury intrusion method to measure pore size of SCR denitration
                 Chromatography A, 2006, 1126(1/2): 107-119.       catalyst[J].  Chemical  Enterprise  Management  (化工管理),  2018,
            [19]  HO  C  C,  ZYDNEY  A  L.  Measurement  of  membrane  pore   499(28): 201-203.
                 interconnectivity[J].  Journal  of  Membrane  Science,  2000,  170(1):   [36]  CHEN J (陈捷), LU D Y (卢都友), LI K (李款), et al. Pore structure
                 101-112.                                          characteristics  of  metakaolin-based  geopolymers  by  nitrogen
            [20]  THOMAS  H,  DE  NEUVILLE  B  C,  STORTI  G,  et al.  Role  of   adsorption method[J]. Journal of the Chinese Ceramic Society (硅酸
                 tentacles and protein loading on pore accessibility and mass transfer   盐学报), 2017, 45(8): 85-91.
                 in  cation  exchange  materials  for  proteins[J].  Journal  of   [37]  DE CASTRO A R, AGNAOU M, AHMADI-SÉNICHAULT A, et al.
                 Chromatography A, 2013, 1285: 48-56.              Numerical  porosimetry:  Evaluation  and  comparison  of  yield  stress
            [21]  MAIER R S, SCHURE M R. Transport properties and size exclusion   fluids  method,  mercury  intrusion  porosimetry  and  pore  network
                 effects  in  wide-pore  superficially  porous  particles[J].  Chemical   modelling approaches[J]. Computers & Chemical Engineering, 2020,
                 Engineering Science, 2018, 185: 243-255.          133: 106662.
            [22]  ALLAH  A,  PYELL  U.  Adamantyl-group  containing  mixed-mode
                 acrylamide-based continuous beds for capillary electrochromatography.       (下转第 1428 页)
   39   40   41   42   43   44   45   46   47   48   49