Page 139 - 《精细化工》2020年第9期
P. 139

第 9 期                     王涵颖,等:  磁性固体酸催化制备高羟值植物油基多元醇                                   ·1853·


                (2)将该催化剂用于甘油开环环氧大豆油的反                              molecular sieves: Synthesis, characterization and catalytic activity in
            应中,最佳的反应条件为:反应温度 80 ℃,反应时                              the epoxidation of vegetable oil[J]. Catalysis Letters, 2010, 137(1): 88-93.
                                                               [15]  KOH E, LEE S, SHIN J, et al. Renewable polyurethane microcapsules
            间 6 h,催化剂用量为环氧大豆油质量的 1%。在此                             with isosorbide derivatives for self-healing anticorrosion coatings[J].
            条件下,环氧大豆油的开环转化率达 99%,经 6 次                             Industrial & Engineering Chemistry Research, 2013, 52(44): 15541-
                                                                   15548.
            重复使用后开环转化率仍可达 97%。证明该催化剂                           [16]  DAI H H, YANG L T, LIN B, et al. Synthesis and characterization of
            催化选择性及活性较高,稳定性较好。                                      the different soy-based polyols  by ring opening of epoxidized
                (3)利用甘油作为开环剂,产物大豆油多元醇                              soybean oil with  methanol 1,2-ethanediol and  1,2-propanediol[J].
                                                                   Journal of the American Oil Chemists' Society, 2009, 86(3): 261-267.
            热稳定性较好且黏度适中,羟值可达 365 mg KOH/g,                     [17]  JUNG S M, PARK Y C, PARK K. Effects of environmental conditions
            完全可以替代石油基多元醇作为合成环保型聚氨酯                                 and methanol feeding strategy on lipase-mediated biodiesel  production
                                                                   using soybean oil[J]. Biotechnology and Bioprocess Engineering,
            的原料。
                                                                   2010, 15(4): 614-619.
                                                               [18]  ALEXANDER J  C, STEPHEN G  D, JAMES A L,  et al. Ring-
            参考文献:                                                  opening hydrofluorination of 2,3- and 3,4-epoxy amines by HBF 4·OEt 2:
            [1]   ZHAO  C H, ZHANG Y P, LI Y,  et al. Production of fuels and   Application to the asymmetric synthesis  of (S,  S)-3-deoxy-3-
                 chemicals from renewable resources using engineered escherichia   fluorosafingo[J]. ChemInform, 2011, 76(11): 4617-4627.
                 coli[J]. Biotechnology Advances, 2019, 37(7): 107402.   [19]  IONESCU M, PETROVIC Z S, WAN X M. Ethoxylated soybean
            [2]   KUMAR G, DHARMARAJA J, ARVINDNARAYAN  S, et al. A   polyols for polyurethanes[J]. Journal of Polymers and the Environment,
                 comprehensive review on thermochemical, biological, biochemical   2010, 18(1): 1-7.
                 and hybrid conversion methods  of bio-derived lignocellulosic   [20]  MA H, YANG X Q, HUANG Y B, et al. Phosphotungstic acid based
                 molecules into renewable fuels[J]. Fuel, 2019, 251: 352-367.   mesoporous silica catalysts for the preparation of soybean oil-based
            [3]   ZIA K M, NOREEN A, ZUBER M, et al. Recent developments and   polyols[J]. Catalysis Letters, 2017, 147(3): 716-726.
                                                                                                           2-
                 future prospects on bio-based polyesters derived from renewable   [21]  HOSSEIN G, BEHNAZ G, AFSANEH R, et al. Fe 3O 4@ZrO 2/SO 4 :
                 resources: A review[J]. International Journal of Biological Macromolecules,   A recyclable  magnetic heterogeneousnanocatalyst for synthesis of
                 2015, 82: 1028-1040.                              β-amino carbonyl derivativesand synthesis of benzylamino coumarin
            [4]   ZHANG C Q,  LI Y  Z,  CHEN R  Q,  et al. Polyurethanes from   derivatives through  mannich reaction[J]. Applied Organometallic,
                 solvent-free vegetable oil-based polyols[J]. ACS Sustainable   2017, 39(6): 4821-4829.
                 Chemistry & Engineering, 2014, 2(10): 2465-2476.   [22]  LI Z S (李占双),  FAN M Q (范美青), LIU Y S (刘岩松),  et al.
            [5]   ALAGI P, HONG  S C. Vegetable oil-based polyols for sustainable   Preparation and properties  of nano magnetic solid acid catalyst
                                                                     2
                 polyurethanes[J]. Macromolecular Research, 2015, 23(12): 1079-1086.   SO 4 /ZrO 2/Fe 3O 4/TiO 2[J]. Petrochemical Technology (石油化工), 2009,
            [6]   YUE J, NARINE S S. Separation and quantification of vegetable oil   38(11): 1151-1157.
                 based polyols  by high performance  liquid chromatography with   [23]  LEI Q F,  LI D,  LI J F,  et al. Glycerol esterification to glyceryl
                                                                               2
                 evaporative light scattering detection[J]. Journal of the American Oil   diacetate over SO 4 /W-Zr complex solid super acid catalysts[J].
                 Chemists' Society, 2007, 84(9): 803-807.          Chemistry Select, 2019, 4(9): 2780-2786.
            [7]   GARRISON T F, KESSLER M R, LAROCK R  C.  Effects of   [24]  GHAFURI H,  RASHIDIZADEH A,  GHORBANI B,  et al. Nano
                                                                                               2
                 unsaturation and different ring-opening methods on the properties of   magnetic sulfated zirconia (Fe 3O 4@ZrO 2/SO 4 ): An efficient solid
                 vegetable oil-based polyurethane coatings[J]. Polymer, 2014, 55(4):   acid catalyst for the green synthesis of α-aminonitriles and imines[J].
                 1004-1011.                                        ChemInform, 2015, 46(43): 2935-2943.
            [8]   SAHOO S, KALITA H, MOHANTY S, et al. Synthesis of vegetable   [25]  ZHAO Y B (赵玉宝), ZENG Y  W (曾燕伟), TAO K Y (陶克毅).
                                                                                              2
                 oil-based polyurethane: A study on curing kinetics behavior[J].   Crystal structure and acidity of solid acid SO 4 /ZrO 2 and its catalytic
                 International Journal of Chemical Kinetics, 2016, 10(48): 622-634.   activity for isomerization of butane[J]. Chinese Journal of Catalysis
            [9]   MYRIAM D, MAXIME E, REMI A, et al. From vegetable oils to   (催化学报), 2002, 23(2): 168-172.
                 polyurethanes: Synthetic  routes to polyols  and  main industrial   [26]  JABBAR G, AMIN O, OSCAR C,  et al. A magnetically separable
                                                                     2
                 products[J]. Polymer Reviews, 2012, 52(1): 38-79.   SO 4 /Fe-Al-TiO 2 solid acid catalyst for biodiesel production from
            [10]  KAI L C, AUNG  M M, RAYUNG  M, et al. Performance of ionic   waste cooking oil[J]. Applied Catalysis B: Environmental, 2018, 234:
                 transport properties in vegetable oil-based polyurethane acrylate gel   268-278.
                 polymer electrolyte[J]. ACS Omega, 2019, 4(2): 2554-2564.   [27]  KARADENIZ  K,  CALOKOGLU Y, SEN M Y, et al. A novel
            [11]  CAMPANELLA A, MIGUEL A B. Degradation of the oxirane ring   polyurethanes from epoxidized soybean oil  synthesized by ring
                 of epoxidized vegetable oils in liquid-liquid heterogeneous reaction   opening with bifunctional compounds[J]. Polymer  Bulletin, 2017,
                 systems[J]. Chemical Engineering Journal, 2006, 12: 141-152.   74(7): 2819-2839.
            [12]  HENNA P, LAROCK R C. Novel thermosets obtained by the ring-   [28]  ZHANG C Q, DING R, KESSLER M R. Reduction of epoxidized
                 opening metathesis polymerization of a functionalized vegetable oil   vegetable oils: A novel method to prepare bio-based polyols  for
                 and dicyclopentadiene[J]. Journal of Applied Polymer Science, 2009,   polyurethanes[J].  Macromolecular Rapid Communications, 2014,
                 112(3): 1788-1797.                                35(11): 1068-1074.
            [13]  PAGES-XATART-PARES X, BONNET C, MORIN O. Cheminform   [29]  GE J J (戈进杰), ZHANG Z N (张志楠), XU J T (徐江涛). Study on
                 abstract: Synthesis of new derivatives from vegetable  oil methyl   environmentally friendly materials based on corn-cob(Ⅰ) the liquefaction
                 esters via epoxidation and oxirane opening[J]. ChemInform, 2010,   reaction of corn-cob and  preparation  of plant  polyols[J]. Polymer
                 31(29): 11-15.                                    Materials Science and Engineering (高分子材料科学与工程), 2003,
            [14]  YE X, JIANG P P, ZHANG P B, et al. Novel Ti and Mn mesoporous     19(3): 194-197.
   134   135   136   137   138   139   140   141   142   143   144