Page 147 - 《精细化工》2021年第1期
P. 147

第 1 期                      王春莉,等:  绿色合成桑叶银纳米粒及其抗菌抗癌活性                                    ·137·


            [18]  GRYN-RYNKO A, BAZYLAK  G, OLSZEWSKA-SLONINA D.   [35]  DADASHPOUR  M, FIROUZI-AMANDI  A, POURHASSAN-
                 New potential phytotherapeutics obtained from White  Mulberry   MOGHADDAM M, et al. Biomimetic synthesis of silver nanoparticles
                 (Morus alba  L.) leaves[J]. Biomedicine & Pharmacotherapy, 2016,   using Matricaria Chamomilla extract and their potential anticancer
                 84: 628-636.                                      activity against human lung cancer cells[J]. Materials Science and
            [19]  AHMED S, AHMAD M, SWAMI B L, et al.  A review on plants   Engineering C-Materials for Biological Applications, 2018, 92:
                 extract mediated synthesis of  silver nanoparticles for antimicrobial   902-912.
                 applications: A green expertise[J]. Journal of Advanced Research,   [36]  DAS J, VELUSAMY P. Antibacterial effects of biosynthesized silver
                 2016, 7(1): 17-28.                                nanoparticles using aqueous leaf extract of  Rosmarinus officinalis
            [20]  DONG C F, CHENG F,  ZHANG X L,  et al.  Rapid and green   L[J]. Materials Research Bulletin, 2013, 48(11): 4531-4537.
                 synthesis of monodisperse silver nanoparticles using mulberry leaf   [37]  AMOOAAGHAIE R, SAERI M R, AZIZI M. Synthesis,
                 extract[J]. Rare Metal Materials and Engineering, 2018, 47(4):   characterization and biocompatibility of silver  nanoparticles
                 1089-1095.                                        synthesized from  Nigella sativa leaf  extract in  comparison with
            [21]  JAIN S, MEHATA M S.  Medicinal  plant leaf extract  and pure   chemical silver nanoparticles[J].  Ecotoxicology  and  Environmental
                 flavonoid mediated green synthesis of silver nanoparticles and their   Safety, 2015, 120: 400-408.
                 enhanced antibacterial property[J]. Scientific Reports,  2017, 7(1):   [38]  ELEMIKE E E,  ONWUDIWE D  C, EKENNIA  A  C,  et al.
                 15867-15867.                                      Phytosynthesis of silver nanoparticles using aqueous leaf extracts of
            [22]  SUN W J (孙文杰), CHEN  Y (陈彦), GAO X (高霞),  et al.   Lippia Citriodora: Antimicrobial, larvicidal and photocatalytic
                 Preparation and characterization  of Sanguisorbae Radix/nano-silver   evaluations[J]. Materials Science &  Engineering C-Materials for
                 composites[J]. Chinese Traditional and Herbal Drugs (中草药),  Biological Applications, 2017, 75: 980-989.
                 2013, 44(24): 3465-3470.                      [39]  PANACEK A, KOLAR M, VECEROVA R, et al. Antifungal activity
            [23]  GAJENDRAN B, CHINNASAMY A, DURAI P, et al. Biosynthesis   of silver nanoparticles against Candida spp[J]. Biomaterials, 2009,
                 and characterization of silver nanoparticles from Datura inoxia and   30(31): 6333-6340.
                 its apoptotic effect on human breast cancer cell line  MCF7[J].   [40]  DE-ARAUJO A  R,  RAMOS-JESUS J, DE O  T  M, et  al.
                 Materials Letters, 2014, 122: 98-102.             Identification of eschweilenol C in derivative of Terminalia fagifolia
            [24]  ZHAO H J (赵海军), ZHAO W Y (赵维英), HONG Z H (洪泽辉), et   Mart. and green synthesis of bioactive and biocompatible silver
                 al. Preparation of silver nanoparticles loaded with Potentilla discolor   nanoparticles[J]. Industrial Crops and Products, 2019, 137: 52-65.
                 extract and evaluation of their antimicrobial activities[J]. Chinese   [41]  HUANG F C,  LONG  Y X, LIANG Q Q,  et al. Safed Musli
                 Traditional Patent Medicine (中成药), 2016, 38(10): 2148-2156.   (Chlorophytum borivilianum L.) callus-Mediated biosynthesis of
            [25]  DIPANKAR C, MURUGAN S. The green synthesis, characterization   silver nanoparticles and evaluation of their antimicrobial activity and
                 and evaluation of the biological activities of silver nanoparticles   cytotoxicity against human colon cancer cells[J]. Journal of
                 synthesized from  Iresine herbstii leaf aqueous extracts[J]. Colloids   Nanomaterials, 2019: 2418785.
                 and Surfaces B: Biointerfaces, 2012, 98: 112-119.   [42]  AJITHA B, REDDY Y A K, LEE Y, et al. Biomimetic synthesis of
            [26]  KUPPUSAMY P, ICHWAN S J A, PARINE N R, et al. Intracellular   silver nanoparticles  using  Syzygium aromaticum (clove) extract:
                 biosynthesis of Au and Ag nanoparticles using ethanolic extract of   Catalytic  and antimicrobial effects[J]. Applied Organometallic
                 Brassica oleracea L. and studies on their physicochemical  and   Chemistry, 2019, 5(33): e4867.
                 biological properties[J]. Journal of Environmental Sciences, 2015,   [43]  FEMI-ADEPOJU A G,  DADA A  D, OTUN K  O,  et al. Green
                 29(3): 151-157.                                   synthesis of  silver nanoparticles using terrestrial fern [(Gleichenia
            [27]  PATRA S, MUKHERJEE S, BARUI  A K, et al. Green  synthesis,   Pectinata (Willd.)  C. Presl.)]: Characterization and antimicrobial
                 characterization of gold and silver nanoparticles and their potential   studies[J]. Heliyon, 2019, 5(4): e01543.
                 application for cancer therapeutics[J]. Materials Science & Engineering   [44]  GAJENDRAN B, CHINNASAMY A, DURAI P, et al. Biosynthesis
                 C-Materials for Biological Applications, 2015, 53: 298-309.   and characterization of silver nanoparticles from Datura inoxia and
            [28]  JEYARAJ  M, SATHISHKUMAR G, SIVANANDHAN G,  et al.   its apoptotic effect on human breast cancer cell line  MCF7[J].
                 Biogenic silver nanoparticles for cancer treatment: An experimental   Materials Letters, 2014, 122: 98-102.
                 report[J]. Colloids and Surfaces B: Biointerfaces, 2013, 106: 86-92.   [45]  DEVI G  K, SATHISHKUMAR  K.  Synthesis of  gold  and silver
            [29]  MOLLICK M M R, RANA D, DASH S K, et al. Studies on green   nanoparticles using  Mukia maderaspatna  plant extract and its
                 synthesized  silver nanoparticles using Abelmoschus Esculentus (L.)   anticancer activity[J]. IET Nanobiotechnology, 2017, 11(2): 143-151.
                 pulp extract having anticancer (in vitro) and antimicrobial applications[J].   [46]  VASANTH K, LLANGO K, MOHAN K R, et al. Anticancer activity
                 Arabian Journal of Chemistry, 2015, 12(8), 2572-2584.   of Moringa olezfera mediated silver nanoparticles on human cervical
            [30]  JAYASEELAN C, RAMKUMAR R, RAHUMAN A A, et al. Green   carcinoma cells by apoptosis induction[J]. Colloids and Surfaces B:
                 synthesis of gold nanoparticles using seed aqueous  extract of   Biointerfaces, 2014, 117: 354-359.
                 Abelmoschus Esculentus and its antifungal activity[J]. Industrial   [47]  CHAVATA R, DATCHANAMURTHY S, KOTTEESWARAN V.
                 Crops and Products, 2013, 45: 423-429.            Biofabrication of silver nanoparticles from aqueous leaf extract of
            [31]  PARK B K, JEONG S, KIM D, et al. Synthesis and size control of   Leucas aspera and their anticancer activity on human cervical cancer
                 monodisperse copper nanoparticles by polyol method[J]. Journal of   cells[J]. Advances in Natural Sciences: Nanoscience and
                 Colloid and Interface Science, 2007, 311(2): 417-424.   Nanotechnology, 2019, 10(4): 045008.
            [32]  LI P (李鹏), GUO J (郭健), ZHANG Y (张宇), et al. Green synthesis   [48]  NAKKALA J R, MATA R, RAJA K, et al. Green synthesized silver
                 of monodispersed  silver nanoparticles based on  β-cyclodextrin[J].   nanoparticles: Catalytic dye degradation, in vitro anticancer activity
                 Chinese Journal of Synthetic Chemistry (合成化学), 2017, 25(3):   and  in vivo  toxicity in rats[J]. Materials Science & Engineering
                 240-244.                                          C-Materials for Biological Applications, 2018, 91: 372-381.
            [33]  KUMMARA S, PATIL M B, URIAH T. Synthesis, characterization,   [49]  SARATALE  R S, SHIN H S, KUMAR  G,  et al. Exploiting
                 biocompatible and anticancer activity of green and chemically   antidiabetic activity of silver nanoparticles synthesized using Punica
                 synthesized silver nanoparticles-A  comparative study[J]. Biomedicine   granatum leaves and anticancer potential against human liver cancer
                 & Pharmacotherapy, 2016, 84: 10-21.               cells (HepG2)[J].  Artificial Cells Nanomedicine & Biotechnology,
            [34]  MANIKANDAN  R, MANIKANDAN B, RAMAN  T,  et al.   2018, 46(1): 211-222.
                 Biosynthesis of silver nanoparticles using ethanolic petals extract of   [50]  PEI J W, FU B F, JIANG L F, et al. Biosynthesis, characterization,
                 Rosa indica and characterization of its antibacterial, anticancer and   and anticancer effect of plant-mediated silver nanoparticles using
                 anti-inflammatory activities[J]. Spectrochimica Acta Part A: Molecular   Coptis chinensis[J]. International Journal of Nanomedicine, 2019, 14:
                 and Biomolecular Spectroscopy, 2015, 138: 120-129.   1969-1978.
   142   143   144   145   146   147   148   149   150   151   152