Page 150 - 《精细化工》2021年第10期
P. 150
·2080· 精细化工 FINE CHEMICALS 第 38 卷
hydrogenation of alkynes using colloidal approaches[J]. Dalton [23] ARMBRÜSTER M, BEHRENS M, FÖTTINGER K, et al. The
Transactions, 2017, 46(37): 12381-12403. intermetallic compound ZnPd and its role in methanol steam
[8] DEELEN T W, MEJÍA C H, JONG K P. Control of metal-support reforming[J]. Chemical Reviews, 2013, 55(3): 289-367.
interactions in heterogeneous catalysts to enhance activity and [24] MASHKOVSKY I S, MARKOV P V, BRAGINA G O, et al.
selectivity[J]. Nature Catalysis, 2019, 2(11): 955-970. Intermetallic Pd1-Zn1 nanoparticles in the selective liquid-phase
[9] IWASA N, YAMAMOTO O, TAMURA R, et al. Difference in the hydrogenation of substituted alkynes[J]. Kinetics and Catalysis,
reactivity of acetaldehyde intermediates in the dehydrogenation of 2017, 58(4): 480-491.
ethanol over supported Pd catalysts[J]. Catalysis Letters, 1999, 62 [25] BARRIOS C E, BALTANÁS M A, BOSCO M V, et al. On the
(2/3/4): 179-184. surface nature of bimetallic PdZn particles supported on a ZnO-CeO 2
[10] PENNER S, ARMBRÜSTER M. Formation of intermetallic nanocomposite for the methanol steam reforming reaction[J].
compounds by reactive metal-support interaction: A frequently Catalysis Letters, 2018, 148(8): 2233-2246.
encountered phenomenon in catalysis[J]. ChemCatChem, 2015, 7 [26] KARL-HEINZ D, CASEY P, FRANCESCA M, et al. Selective
(3): 374-392. partial hydrogenation of acrolein on Pd: A mechanistic study[J]. ACS
[11] EWA N, SULTAN M A, YUAN L, et al. Highly selective PdZn/ZnO Catalysis, 2017, 7(8): 5523-5533.
catalysts for the methanol steam reforming reaction[J]. Catalysis [27] TAO T Y (陶庭雨), FU W Q (傅雯倩). Preparation of a Ni 2P/HZSM-5
Science &Technology, 2018, 8(22): 5848-5857. catalyst and its catalytic performance for phenylacetylene selective
[12] SHEN L F, MAO S J, LI J Q, et al. PdZn intermetallic on a hydrogenation[J]. Fine Chemicals(精细化工), 2019, 36(5): 929-934.
CN@ZnO hybrid as an efficient catalyst for the semihydrogenation [28] BRIDIER B, LOPEZ N, PEREZ-RAMIREZ J, et al. Partial
of alkynols[J]. Journal of Catalysis, 2017, 350: 13-20. hydrogenation of propyne over copper-based catalysts and
[13] DARIA V G, ALEKSEY A V, ANNA M T, et al. A study on comparison with nickel-based analogues[J]. Journal of Catalysis,
structural features of bimetallic Pd-M/C (M: Zn, Ga, Ag) catalysts 2010, 269(1): 80-92.
for liquid-phase selective hydrogenation of acetylene[J]. Applied [29] DROST M, ROSAR V, MARTA S D, et al. Pd-catalyzed
Catalysis A, General, 2018, 563: 18-27. Z-selectivity semi-hydrogenation of alkynes: Determining type of
[14] WU H L, GUO L S, MA F Y, et al. Structure and surface active species[J]. ChemCatChem, 2015, 7(14): 2095-2107.
characteristics of Fe promoted Ni/Al 2O 3 catalysts for hydrogenation [30] SHU M, SHI C, YU J, et al. Efficient selective hydrogenation of
of 1,4-butynediol to 1,4-butenediol in a slurry-bed reactor[J]. 2-butyne-1,4-diol to 2-butene-1,4-diol by silicon carbide supported
Catalysis Science & Technology, 2019, 9(23): 6598-6605. platinum catalyst[J]. Catalysis Science & Technology, 2020, 10(2):
[15] FANG J, ZHUANG C J, MENG J P, et al. Selective hydrogenation 327-331.
of butyne-1,4-diol to butane-1,4-diol over Ni/Al 2O 3-SiO 2 catalysts[J]. [31] CHEN X, SHI C, LIANG C H. Highly selective catalysts for the
China Petroleum Processing and Petrochemical Technology, 2018, hydrogenation of Alkynols: A Review[J]. Chinese Journal of
20(4): 20-28. Catalysis, 2021, 42(12): 2105-2121.
[16] JIAO L, REGALBUTO J R. The synthesis of highly dispersed noble [32] PRESTIANNI A, CRESPO-QUESADA M, CORTESE R, et al.
and base metals on silica via strong electrostatic adsorption: I. Structure sensitivity of 2-methyl-3-butyn-2-ol hydrogenation on Pd:
Amorphous silica[J]. Journal of Catalysis, 2008, 260(2): 329-341. Computational and experimental modeling[J]. The Journal of
[17] PARK J, REGALBUTO J R. A simple, accurate determination of Physical Chemistry C, 2018, 118(6): 3119-3128.
oxide PZC and the strong buffering effect of oxide surfaces at [33] LIU Q (刘倩), LI C (李闯), CHEN X (陈霄), et al. Shape and size
incipient wetness [J]. Journal of Colloid and Interface Science, 1995, controlled synthesis of Pd nanoparticles for selective hydrogenation
175(1): 239-252. of 1,4-butynediol [J]. Journal of Molecular Catalysis (分子催化),
[18] NIU Y M, LIU X, WANG Y Z, et al. Visualizing formation of 2013, 27(4): 316-322.
intermetallic PdZn in a Palladium/Zinc oxide catalyst: Interfacial [34] CHEN X,ZHANG M M, YANG K X, et al. Raney Ni-Si catalysts
fertilization by PdH x[J]. Angewandte Chemie International Edition, for selective hydrogenation of highly concentrated 2-butyne-1,4-diol
2019, 58(13): 4232-4237. to 2-butene-1,4-diol [J]. Catalysis Letters, 2014, 144(7): 1118-1126.
[19] ZHU H Q, QIN Z F, SHAN W J, et al. Pd/CeO 2-TiO 2 catalyst for CO [35] LI C, ZHANG M M, DI X, et al. One-step synthesis of Pt@ZIF-8
oxidation at low temperature: A TPR study with H 2 and CO as catalyst for the selective hydrogenation of 1,4-butynediol to
reducing agents[J]. Journal of Catalysis, 2004, 225(2): 267-277. 1,4-butenediol[J]. Chinese Journal of Catalysis, 2016, 37(9): 1555-
[20] QIN F (秦霏), YAN W X (颜万鑫), NA W (纳薇), et al. Effect of 1561.
active morphology on catalytic hydrogenation of CuO/ZnO/Al 2O 3[J]. [36] BERGUERAND C, YURANOV I, CARDENAS-LIZANA F, et al.
Fine Chemicals (精细化工), 2019, 36(5): 905-912. Size-controlled Pd nanoparticles in 2-butyne-l,4-diol hydrogenation:
[21] SCHREIER M, REGALBUTO J R. A fundamental study of Pt Support effect and kinetics study[J]. The Journal of Physical
tetraammine impregnation of silica: 1. The electrostatic nature of Chemistry C, 2014, 118(23): 12250-12259.
platinum adsorption[J]. Journal of Catalysis, 2004, 225(1): 190-202. [37] GONZÁLEZ-FERNÁNDEZ A, BERENGUER-MURCIA A,
[22] DARIA V G, EVGENY V K, NADEZHDA S S, et al. Study on the CAZORLA-AMORÓS D, et al. Zn-promoted selective gas-phase
active phase formation of Pd-Zn/Sibunit catalysts during the thermal hydrogenation of tertiary and secondary C4 alkynols over supported
treatment in hydrogen[J]. Applied Surface Science, 2019, 483: 730- Pd[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28158-
741. 28168.