Page 150 - 《精细化工》2021年第10期
P. 150

·2080·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 hydrogenation of  alkynes using colloidal approaches[J].  Dalton   [23]  ARMBRÜSTER  M, BEHRENS M, FÖTTINGER K,  et al. The
                 Transactions, 2017, 46(37): 12381-12403.          intermetallic compound ZnPd and its role in methanol steam
            [8]   DEELEN T W, MEJÍA C H, JONG K P. Control of metal-support   reforming[J]. Chemical Reviews, 2013, 55(3): 289-367.
                 interactions in heterogeneous catalysts to enhance activity and   [24]  MASHKOVSKY I S, MARKOV P V, BRAGINA G  O,  et al.
                 selectivity[J]. Nature Catalysis, 2019, 2(11): 955-970.   Intermetallic Pd1-Zn1 nanoparticles in the selective liquid-phase
            [9]   IWASA N, YAMAMOTO O, TAMURA R, et al. Difference in the   hydrogenation of  substituted alkynes[J]. Kinetics and  Catalysis,
                 reactivity of acetaldehyde intermediates in the dehydrogenation of   2017, 58(4): 480-491.
                 ethanol over supported Pd catalysts[J]. Catalysis Letters, 1999, 62   [25]  BARRIOS C E, BALTANÁS M A,  BOSCO M V, et  al. On the
                 (2/3/4): 179-184.                                 surface nature of bimetallic PdZn particles supported on a ZnO-CeO 2
            [10]  PENNER S, ARMBRÜSTER M. Formation of intermetallic   nanocomposite for the methanol steam reforming reaction[J].
                 compounds by reactive  metal-support interaction: A  frequently   Catalysis Letters, 2018, 148(8): 2233-2246.
                 encountered  phenomenon in catalysis[J]. ChemCatChem, 2015, 7   [26]  KARL-HEINZ D,  CASEY P, FRANCESCA M,  et al. Selective
                 (3): 374-392.                                     partial hydrogenation of acrolein on Pd: A mechanistic study[J]. ACS
            [11]  EWA N, SULTAN M A, YUAN L, et al. Highly selective PdZn/ZnO   Catalysis, 2017, 7(8): 5523-5533.
                 catalysts for the methanol steam reforming reaction[J]. Catalysis   [27]  TAO T Y (陶庭雨), FU W Q (傅雯倩). Preparation of a Ni 2P/HZSM-5
                 Science &Technology, 2018, 8(22): 5848-5857.      catalyst and  its catalytic  performance for  phenylacetylene  selective
            [12]  SHEN L F, MAO S J, LI J Q,  et al. PdZn intermetallic on a   hydrogenation[J]. Fine Chemicals(精细化工), 2019, 36(5): 929-934.
                 CN@ZnO hybrid as an efficient catalyst for the semihydrogenation   [28]  BRIDIER  B, LOPEZ N, PEREZ-RAMIREZ J,  et al. Partial
                 of alkynols[J]. Journal of Catalysis, 2017, 350: 13-20.   hydrogenation of propyne over copper-based catalysts and
            [13]  DARIA V G, ALEKSEY A V, ANNA M  T,  et al. A study on   comparison with  nickel-based analogues[J]. Journal of Catalysis,
                 structural features of bimetallic Pd-M/C (M: Zn,  Ga, Ag) catalysts   2010, 269(1): 80-92.
                 for liquid-phase selective hydrogenation of acetylene[J]. Applied   [29]  DROST M,  ROSAR V,  MARTA S D,  et al. Pd-catalyzed
                 Catalysis A, General, 2018, 563: 18-27.           Z-selectivity semi-hydrogenation of alkynes: Determining type of
            [14]  WU H L, GUO  L S, MA F Y,  et al.  Structure and surface   active species[J]. ChemCatChem, 2015, 7(14): 2095-2107.
                 characteristics of Fe promoted Ni/Al 2O 3 catalysts for hydrogenation   [30]  SHU M, SHI C, YU J,  et al.  Efficient selective hydrogenation of
                 of 1,4-butynediol  to 1,4-butenediol  in a slurry-bed reactor[J].   2-butyne-1,4-diol to 2-butene-1,4-diol by silicon carbide supported
                 Catalysis Science & Technology, 2019, 9(23): 6598-6605.   platinum catalyst[J]. Catalysis Science & Technology, 2020, 10(2):
            [15]  FANG J, ZHUANG C J, MENG J P, et al. Selective hydrogenation   327-331.
                 of butyne-1,4-diol to butane-1,4-diol over Ni/Al 2O 3-SiO 2 catalysts[J].   [31]  CHEN X, SHI C,  LIANG C H. Highly selective catalysts for the
                 China Petroleum Processing and  Petrochemical Technology, 2018,   hydrogenation of Alkynols: A Review[J].  Chinese Journal of
                 20(4): 20-28.                                     Catalysis, 2021, 42(12): 2105-2121.
            [16]  JIAO L, REGALBUTO J R. The synthesis of highly dispersed noble   [32]  PRESTIANNI A, CRESPO-QUESADA M, CORTESE  R,  et al.
                 and base metals on silica  via strong electrostatic adsorption:  I.   Structure sensitivity of 2-methyl-3-butyn-2-ol hydrogenation on Pd:
                 Amorphous silica[J]. Journal of Catalysis, 2008, 260(2): 329-341.   Computational and experimental modeling[J]. The Journal of
            [17]  PARK J, REGALBUTO J R. A simple, accurate determination of   Physical Chemistry C, 2018, 118(6): 3119-3128.
                 oxide PZC  and the strong buffering effect of oxide surfaces at   [33]  LIU Q (刘倩), LI C (李闯), CHEN X (陈霄), et al. Shape and size
                 incipient wetness [J]. Journal of Colloid and Interface Science, 1995,   controlled synthesis of Pd nanoparticles for selective hydrogenation
                 175(1): 239-252.                                  of 1,4-butynediol [J]. Journal of Molecular Catalysis (分子催化),
            [18]  NIU Y  M,  LIU X, WANG Y Z,  et al. Visualizing formation of   2013, 27(4): 316-322.
                 intermetallic PdZn in a Palladium/Zinc oxide catalyst: Interfacial   [34] CHEN X,ZHANG M M, YANG K X, et al. Raney Ni-Si catalysts
                 fertilization by PdH x[J]. Angewandte Chemie International Edition,   for selective hydrogenation of highly concentrated 2-butyne-1,4-diol
                 2019, 58(13): 4232-4237.                          to 2-butene-1,4-diol [J]. Catalysis Letters, 2014, 144(7): 1118-1126.
            [19]  ZHU H Q, QIN Z F, SHAN W J, et al. Pd/CeO 2-TiO 2 catalyst for CO   [35]  LI C, ZHANG M M, DI X, et al. One-step synthesis of Pt@ZIF-8
                 oxidation at low temperature: A TPR study with H 2 and CO as   catalyst for the selective hydrogenation of 1,4-butynediol to
                 reducing agents[J]. Journal of Catalysis, 2004, 225(2): 267-277.   1,4-butenediol[J]. Chinese Journal of  Catalysis, 2016,  37(9): 1555-
            [20]  QIN F (秦霏), YAN W X (颜万鑫), NA W (纳薇), et al. Effect of   1561.
                 active morphology on catalytic hydrogenation of CuO/ZnO/Al 2O 3[J].   [36]  BERGUERAND C, YURANOV I, CARDENAS-LIZANA F, et al.
                 Fine Chemicals (精细化工), 2019, 36(5): 905-912.      Size-controlled Pd nanoparticles in 2-butyne-l,4-diol hydrogenation:
            [21]  SCHREIER M,  REGALBUTO J R. A fundamental study of Pt   Support effect and kinetics study[J].  The Journal of Physical
                 tetraammine impregnation  of  silica: 1. The electrostatic nature of   Chemistry C, 2014, 118(23): 12250-12259.
                 platinum adsorption[J]. Journal of Catalysis, 2004, 225(1): 190-202.   [37]  GONZÁLEZ-FERNÁNDEZ  A,  BERENGUER-MURCIA  A,
            [22]  DARIA V G, EVGENY V K, NADEZHDA S S, et al. Study on the   CAZORLA-AMORÓS D,  et al. Zn-promoted selective  gas-phase
                 active phase formation of Pd-Zn/Sibunit catalysts during the thermal   hydrogenation of tertiary and secondary C4 alkynols over supported
                 treatment in hydrogen[J]. Applied Surface Science, 2019, 483: 730-   Pd[J]. ACS Applied Materials & Interfaces,  2020, 12(25): 28158-
                 741.                                              28168.
   145   146   147   148   149   150   151   152   153   154   155