Page 184 - 《精细化工》2021年第11期
P. 184

·2330·                            精细化工   FINE CHEMICALS                                 第 38 卷

            明该催化剂具有良好的稳定性和重复性。利用造纸                             [13]  TODA M, TAKAGAKI A, OKAMURA M, et al. Green chemistry:
                                                                   Biodiesel made with sugar catalyst[J].  Nature, 2005, 438(7065):
            污泥制备碳基固体酸具有成本低、工艺简单、环境
                                                                   178.
            友好、催化效果好等优点,具有工业化生产的潜力。                            [14]  HARA M, YOSHIDA T, TAKAGAKI A, et al. A carbon material as a
                                                                   strong protonic acid[J]. Angewandte  Chemie International Edition,
            参考文献:                                                  2004, 116(22): 3015-3018.
                                                               [15]  YANG  X M (杨晓敏), WAN J  Q (万金泉). Preparation  of carbon-
            [1]   WANG N N (王宁宁). The research on conversition of carbohydrates
                                                                   based  solid  acid  catalyst  and its catalytic performance[J]. Modern
                 into 5-hydroxymethylfurfural over double metal chlorides and solid
                                                                   Chemical Industry (现代化工), 2011, 31(10): 34-37.
                 acid[D]. Wuxi: Jiangnan University (江南大学), 2015.
                                                               [16] ZHANG  H  (张恒), WANG Z  (王哲), GAO H  K  (高洪坤),  et al.
            [2]   GANDINI A,  BELGACEM M N.  Recent contributions to the
                                                                   Research progress of cellulose catalytic conversion for preparation of
                 preparation of  polymers derived from renewable resources[J].
                                                                   5-HMF in different solvents[J]. Transactions of China Pulp and Paper
                 Journal of Polymers and the Environment, 2002, 10(3): 105-114.
                                                                   (中国造纸学报), 2018, 33(4): 70-76.
            [3]   YANG S S (杨莎莎), ZHANG J H (张江华), LI H Y (李红艳), et al.
                                                               [17]  KIM M, SU Y Q, FUKUOKA A, et al. Aerobic oxidation of HMF-
                 Chitosan-derived solid acid as a catalyst for fructose dehydration into
                                                                   cyclic acetal enables selective FDCA formation with CeO 2-supported
                 5-hydroxymethylfurural[J]. Fine  Chemicals (精细化工), 2019, 36(8):
                                                                   Au catalyst[J]. Angewandte Chemie, 2018, 130: 27.
                 1591-1597.
                                                               [18]  YANG Y L, DU Z T, MA J P, et al. Biphasic catalytic conversion of
            [4]   PRIADI C, WULANDARI D, RAHMATIKA I,  et al. Biogas
                                                                   fructose by continuous hydrogenation  of HMF  over a  hydrophobic
                 production in the anaerobic digestion of paper sludge[J].  Apcbee
                                                                   ruthenium catalyst[J]. Chemushem, 2014, 7(5): 1352-1356.
                 Procedia, 2014, 9: 65-69.
                                                               [19]  FU H L ( 付红莉 ). Hydrolysis of carbohydrates into 5-
            [5]   JARIA G, PATRÍCIASILVA C, A B P OLIVEIRA J, et al. Production
                                                                   hydroxymethylfurfural catalyzed with solid catalyst[D]. Beijing:
                 of highly efficient activated carbons from industrial wastes for the
                                                                   Beijing University of Chemical Technology (北京化工大学), 2014.
                 removal of pharmaceuticals from water—A full factorial design[J].
                                                               [20]  WANG J J, TAN Z C, ZHU C C, et al. One-pot catalytic conversion
                 Journal of Hazardous Materials, 2019, 370: 212-218.
                                                                   of microalgae (Chlorococcum sp.) into 5-hydroxymethylfurfural over
            [6]   SHI S L (石淑兰), HE F W (何福望), ZHANG Z (张曾), et al. Pulp
                                                                   the commercial H-ZSM-5 zeolite[J]. Green Chemistry, 2016, 18(2):
                 and paper analysis and testing[M]. Beijing: China Light Industry Press
                                                                   452-460.
                 (中国轻工业出版社), 2003: 25-55.
                                                               [21]  WU Q, YU S T, HAO N J, et al. Characterization of products from
            [7]   JIA Z Q, WANG Y, SHI W S, et al. Diamines cross-linked graphene
                 oxide free-standing membranes for ion dialysis separation[J]. Journal   hydrothermal carbonization of pine[J]. Bioresource Technology, 2017,
                 of Membrane Science, 2016, 520: 139-144.          244(Pt1): 78-83.
            [8]   WANG J J, XU W J, REN J W, et al. Efficient catalytic conversion of   [22]  HUANG F, LI W Z, LIU Q C, et al. Sulfonated tobacco stem carbon
                 fructose into hydroxymethylfurfural  by a novel carbon-based solid   as efficient catalyst for  dehydration of C 6 carbohydrate to 5-
                 acid[J]. Green Chemistry, 2011, 13(10): 2678-2681.   hydroxymethylfurfural in  γ-valerolactone/water[J]. Fuel Processing
            [9]   ZHAO J, ZHOU C M, HE C, et al. Efficient dehydration of fructose   Technology, 2018, 181: 294-303.
                 to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid   [23]  CAO  L  C, YU I K M, CHEN S S,  et al. Production of 5-
                 catalysts[J]. Catalysis Today, 2016, 264: 123-130.   hydroxymethylfurfural from starch-rich food waste catalyzed by
            [10]  CAO L C, YU I K M, TSANG D C W, et al. Phosphoric acid-activated   sulfonated biochar[J]. Bioresource Technology, 2018, 252: 76-82.
                 wood biochar for catalytic conversion of starch-rich food waste into   [24]  CHEN T, PENG  L C, YU X,  et al. Magnetically recyclable
                 glucose and 5-hydroxymethylfurfural[J].  Bioresource  Technology,   cellulose-derived carbonaceous solid acid catalyzed the biofuel
                 2018, 267: 242-248.                               5-ethoxymethylfurfural synthesis from renewable carbohydrates[J].
            [11]  CHEN G, FANG B S. Preparation of solid acid catalyst from glucose-   Fuel, 2018, 219: 344-352.
                 starch mixture for biodiesel production[J]. Bioresource Technology,   [25]  ZHAO J, ZHOU C M, HE C, et al. Efficient dehydration of fructose
                 2011, 102(3): 2635-2640.                          to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid
            [12]  KIM R, QIN  W P,  WEI G D,  et al.  Growth of SiO 2  hierarchical   catalysts[J]. Catalysis Today, 2016, 264: 123-130.
                 nanostructure on SiC nanowires  using thermal decomposition of   [26]  YU I K M, TSANG D C W, YIP A C K, et al. Valorization of food
                 ethanol and titanium tetrachloride and its FTIR and PL property[J].   waste into hydroxymethylfurfural: Dual role of metal ions in successive
                 Materials Chemistry & Physics, 2010, 119(1/2): 309-314.   conversion steps[J]. Bioresource Technology, 2016, 219: 338-347.


            (上接第 2298 页)                                           electronic paper displays[J]. The Chinese Journal of Process Engineering
                                                                   (过程工程学报), 2010, 10(4): 815-825.
            [13]  LIU S W, YU J G, JARONIEC M. Tunable photocatalytic selectivity   [17]  ZHOU  G W (周国伟), CHEN D  R (陈代荣), XU G Y  (徐桂英).
                 of hollow TiO 2 microspheres composed of anatase polyhedra with   Preparation and characterization of ilmenite CoTiO 3 nano materials
                 exposed {001} facets[J]. Journal of the American Chemical Society,   [J]. Acta Chimic Sinica (化学学报), 2005, 63(20): 1917-1920.
                 2010, 132(34): 11914-11916.                   [18]  ZHANG Y, ZHEN B, AL-SHUJA'A S A S, et al. Fast-response and
            [14]  FANG  Y, WANG J J, LI L L,  et al.  Preparation of chromatic   monodisperse silica nanoparticles modified with ionic liquid towards
                 composite hollow  nanoparticles containing mixed metal oxides for   electrophoretic displays[J]. Dyes and Pigments, 2018, 148: 270-275.
                 full-color electrophoretic displays[J]. Journal of Materials Chemistry   [19]  PARK J H, MI A L, PARK B J, et al. Preparation and electrophoretic
                 C, 2016, 4(24): 5664-5670.                        response of poly(methyl methacrylate-co-methacrylic acid) coated
            [15]  GUO H L, ZHAO X P, WANG J P. Synthesis of functional   TiO 2 nanoparticles for electronic paper application[J]. Current Applied
                 microcapsules containing suspensions responsive to electric fields[J].   Physics, 2007, 7(4): 349-351.
                 Journal of Colloid and Interface Science, 2005, 284(2): 646-651.   [20]  ESHKALAK S K, KHATIBZADEH M, KOWSARI  E,  et al.
            [16] WEN T (温婷), MENG X W (孟宪伟), REN X L (任湘菱), et al.   Overview of electronic ink and methods  of  production  for  use in
                 Research progress in preparation of electrophoretic particles in   electronic displays[J]. Optics and Laser Technology, 2019, 117: 38-51.
   179   180   181   182   183   184   185   186   187   188   189