Page 184 - 《精细化工》2021年第11期
P. 184
·2330· 精细化工 FINE CHEMICALS 第 38 卷
明该催化剂具有良好的稳定性和重复性。利用造纸 [13] TODA M, TAKAGAKI A, OKAMURA M, et al. Green chemistry:
Biodiesel made with sugar catalyst[J]. Nature, 2005, 438(7065):
污泥制备碳基固体酸具有成本低、工艺简单、环境
178.
友好、催化效果好等优点,具有工业化生产的潜力。 [14] HARA M, YOSHIDA T, TAKAGAKI A, et al. A carbon material as a
strong protonic acid[J]. Angewandte Chemie International Edition,
参考文献: 2004, 116(22): 3015-3018.
[15] YANG X M (杨晓敏), WAN J Q (万金泉). Preparation of carbon-
[1] WANG N N (王宁宁). The research on conversition of carbohydrates
based solid acid catalyst and its catalytic performance[J]. Modern
into 5-hydroxymethylfurfural over double metal chlorides and solid
Chemical Industry (现代化工), 2011, 31(10): 34-37.
acid[D]. Wuxi: Jiangnan University (江南大学), 2015.
[16] ZHANG H (张恒), WANG Z (王哲), GAO H K (高洪坤), et al.
[2] GANDINI A, BELGACEM M N. Recent contributions to the
Research progress of cellulose catalytic conversion for preparation of
preparation of polymers derived from renewable resources[J].
5-HMF in different solvents[J]. Transactions of China Pulp and Paper
Journal of Polymers and the Environment, 2002, 10(3): 105-114.
(中国造纸学报), 2018, 33(4): 70-76.
[3] YANG S S (杨莎莎), ZHANG J H (张江华), LI H Y (李红艳), et al.
[17] KIM M, SU Y Q, FUKUOKA A, et al. Aerobic oxidation of HMF-
Chitosan-derived solid acid as a catalyst for fructose dehydration into
cyclic acetal enables selective FDCA formation with CeO 2-supported
5-hydroxymethylfurural[J]. Fine Chemicals (精细化工), 2019, 36(8):
Au catalyst[J]. Angewandte Chemie, 2018, 130: 27.
1591-1597.
[18] YANG Y L, DU Z T, MA J P, et al. Biphasic catalytic conversion of
[4] PRIADI C, WULANDARI D, RAHMATIKA I, et al. Biogas
fructose by continuous hydrogenation of HMF over a hydrophobic
production in the anaerobic digestion of paper sludge[J]. Apcbee
ruthenium catalyst[J]. Chemushem, 2014, 7(5): 1352-1356.
Procedia, 2014, 9: 65-69.
[19] FU H L ( 付红莉 ). Hydrolysis of carbohydrates into 5-
[5] JARIA G, PATRÍCIASILVA C, A B P OLIVEIRA J, et al. Production
hydroxymethylfurfural catalyzed with solid catalyst[D]. Beijing:
of highly efficient activated carbons from industrial wastes for the
Beijing University of Chemical Technology (北京化工大学), 2014.
removal of pharmaceuticals from water—A full factorial design[J].
[20] WANG J J, TAN Z C, ZHU C C, et al. One-pot catalytic conversion
Journal of Hazardous Materials, 2019, 370: 212-218.
of microalgae (Chlorococcum sp.) into 5-hydroxymethylfurfural over
[6] SHI S L (石淑兰), HE F W (何福望), ZHANG Z (张曾), et al. Pulp
the commercial H-ZSM-5 zeolite[J]. Green Chemistry, 2016, 18(2):
and paper analysis and testing[M]. Beijing: China Light Industry Press
452-460.
(中国轻工业出版社), 2003: 25-55.
[21] WU Q, YU S T, HAO N J, et al. Characterization of products from
[7] JIA Z Q, WANG Y, SHI W S, et al. Diamines cross-linked graphene
oxide free-standing membranes for ion dialysis separation[J]. Journal hydrothermal carbonization of pine[J]. Bioresource Technology, 2017,
of Membrane Science, 2016, 520: 139-144. 244(Pt1): 78-83.
[8] WANG J J, XU W J, REN J W, et al. Efficient catalytic conversion of [22] HUANG F, LI W Z, LIU Q C, et al. Sulfonated tobacco stem carbon
fructose into hydroxymethylfurfural by a novel carbon-based solid as efficient catalyst for dehydration of C 6 carbohydrate to 5-
acid[J]. Green Chemistry, 2011, 13(10): 2678-2681. hydroxymethylfurfural in γ-valerolactone/water[J]. Fuel Processing
[9] ZHAO J, ZHOU C M, HE C, et al. Efficient dehydration of fructose Technology, 2018, 181: 294-303.
to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid [23] CAO L C, YU I K M, CHEN S S, et al. Production of 5-
catalysts[J]. Catalysis Today, 2016, 264: 123-130. hydroxymethylfurfural from starch-rich food waste catalyzed by
[10] CAO L C, YU I K M, TSANG D C W, et al. Phosphoric acid-activated sulfonated biochar[J]. Bioresource Technology, 2018, 252: 76-82.
wood biochar for catalytic conversion of starch-rich food waste into [24] CHEN T, PENG L C, YU X, et al. Magnetically recyclable
glucose and 5-hydroxymethylfurfural[J]. Bioresource Technology, cellulose-derived carbonaceous solid acid catalyzed the biofuel
2018, 267: 242-248. 5-ethoxymethylfurfural synthesis from renewable carbohydrates[J].
[11] CHEN G, FANG B S. Preparation of solid acid catalyst from glucose- Fuel, 2018, 219: 344-352.
starch mixture for biodiesel production[J]. Bioresource Technology, [25] ZHAO J, ZHOU C M, HE C, et al. Efficient dehydration of fructose
2011, 102(3): 2635-2640. to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid
[12] KIM R, QIN W P, WEI G D, et al. Growth of SiO 2 hierarchical catalysts[J]. Catalysis Today, 2016, 264: 123-130.
nanostructure on SiC nanowires using thermal decomposition of [26] YU I K M, TSANG D C W, YIP A C K, et al. Valorization of food
ethanol and titanium tetrachloride and its FTIR and PL property[J]. waste into hydroxymethylfurfural: Dual role of metal ions in successive
Materials Chemistry & Physics, 2010, 119(1/2): 309-314. conversion steps[J]. Bioresource Technology, 2016, 219: 338-347.
(上接第 2298 页) electronic paper displays[J]. The Chinese Journal of Process Engineering
(过程工程学报), 2010, 10(4): 815-825.
[13] LIU S W, YU J G, JARONIEC M. Tunable photocatalytic selectivity [17] ZHOU G W (周国伟), CHEN D R (陈代荣), XU G Y (徐桂英).
of hollow TiO 2 microspheres composed of anatase polyhedra with Preparation and characterization of ilmenite CoTiO 3 nano materials
exposed {001} facets[J]. Journal of the American Chemical Society, [J]. Acta Chimic Sinica (化学学报), 2005, 63(20): 1917-1920.
2010, 132(34): 11914-11916. [18] ZHANG Y, ZHEN B, AL-SHUJA'A S A S, et al. Fast-response and
[14] FANG Y, WANG J J, LI L L, et al. Preparation of chromatic monodisperse silica nanoparticles modified with ionic liquid towards
composite hollow nanoparticles containing mixed metal oxides for electrophoretic displays[J]. Dyes and Pigments, 2018, 148: 270-275.
full-color electrophoretic displays[J]. Journal of Materials Chemistry [19] PARK J H, MI A L, PARK B J, et al. Preparation and electrophoretic
C, 2016, 4(24): 5664-5670. response of poly(methyl methacrylate-co-methacrylic acid) coated
[15] GUO H L, ZHAO X P, WANG J P. Synthesis of functional TiO 2 nanoparticles for electronic paper application[J]. Current Applied
microcapsules containing suspensions responsive to electric fields[J]. Physics, 2007, 7(4): 349-351.
Journal of Colloid and Interface Science, 2005, 284(2): 646-651. [20] ESHKALAK S K, KHATIBZADEH M, KOWSARI E, et al.
[16] WEN T (温婷), MENG X W (孟宪伟), REN X L (任湘菱), et al. Overview of electronic ink and methods of production for use in
Research progress in preparation of electrophoretic particles in electronic displays[J]. Optics and Laser Technology, 2019, 117: 38-51.