Page 176 - 《精细化工》2021年第12期
P. 176
·2538· 精细化工 FINE CHEMICALS 第 38 卷
[8] MUZZIO M, YU C, LIN H H, et al. Reductive amination of ethyl [19] LAMBROU P S, POLYCHRONOPOULOU K, PETALLIDOU K C,
levulinate to pyrrolidones over AuPd nanoparticles at ambient hydrogen et al. Oxy-chlorination as an effective treatment of aged Pd/CeO 2-
pressure[J]. Green Chemistry, 2019, 21(8): 1895-1899. Al 2O 3 catalysts for Pd redispersion[J]. Applied Catalysis B:
[9] BELLE A, TABANELLI T, FIORANI G, et al. A multiphase protocol Environmental, 2012, 111/112: 349-359.
for selective hydrogenation and reductive amination of levulinic acid [20] HE S M, CHEN C J, CHEN G, et al. High-performance, scalable
with integrated recovery of carbon-supported Ru-based catalysts[J]. wood-based filtration device with a reversed-tree design[J]. Chemistry
ChemSusChem, 2019, 12(14): 3343-3354. of Materials, 2020, 32(5): 1887-1895.
[10] GAO G, SUN P, LI Y Q, et al. Highly stable porous-carbon-coated Ni [21] COLUSSI S, TROVARELLI A, VESSELLI E, et al. Structure and
catalysts for the reductive amination of levulinic acid via an morphology of Pd/Al 2O 3 and Pd/CeO 2/Al 2O 3 combustion catalysts in
unconventional pathway[J]. ACS Catalysis, 2017, 7(8): 4927-4935. Pd-PdO transformation hysteresis[J]. Applied Catalysis A: General,
[11] CHIEFFI G, BRAUN M, ESPOSITO D. Continuous reductive 2010, 390(1/2): 1-10.
amination of biomass-derived molecules over carbonized filter paper- [22] BULUT A, YURDERI M, KARATAS Y, et al. MnO x-promoted PdAg
supported FeNi alloy[J]. ChemSusChem, 2015, 8(21): 3590-3594. alloy nanoparticles for the additive-free dehydrogenation of formic
[12] ALTUĞ C, MUŇOZ-BATISTA M J, RODRÍGUEZ-PADRÓN D, et al. acid at room temperature[J]. ACS Catalysis, 2015, 5(10): 6099-6110.
Continuous flow synthesis of amines from the cascade reactions of [23] LI Y M, LIU H M, MA L, et al. Glycerol hydrogenolysis to
nitriles and carbonyl-containing compounds promoted by Pt-modified propanediols over supported Pd-Re catalysts[J]. RSC Advances,
titania catalysts[J]. Green Chemistry, 2019, 21(2): 300-306. 2014, 4(11): 5503-5512.
[13] VIDAL J D, CLIMENT M J, CORMA A, et al. One-pot selective [24] LI L C, ZHANG N Q, WU R, et al. Comparative study of moisture-
catalytic synthesis of pyrrolidone derivatives from ethyl levulinate treated Pd@CeO 2/Al 2O 3 and Pd/CeO 2/Al 2O 3 catalysts for automobile
and nitro compounds[J]. ChemSusChem, 2017, 10(1): 119-128. exhaust emission reactions: Effect of core-shell interface[J]. ACS
[14] SIDDIKI S M A H, TOUCHY A S, BHOSALE A, et al. Direct Applied Materials & Interfaces, 2020, 12(9): 10350-10358.
synthesis of lactams from keto acids, nitriles, and H 2 by heterogeneous [25] DUYAR M S, TSAI C, SNIDER J L, et al. A highly active molybdenum
Pt catalysts[J]. ChemCatChem, 2018, 10(4): 789-795. phosphide catalyst for methanol synthesis from CO and CO 2[J].
[15] GONG Z X (巩宗霞), LI B (李斌), ZHANG F Y (张飞跃), et al. Angewandte Chemie International Edition, 2018, 57(46): 15045-
Gas-phase catalytic synthesis of alkylpyrazines on ZnFe 2O 4/ZnO[J]. 15050.
Fine Chemicals (精细化工), 2014, 31(4): 524-528. [26] BUITRAGO-SIERRA R, SERRANO-RUIZ J C, RODRÍGUEZ-
[16] ZHOU X Y, LAI X X, LIN T, et al. Preparation of a monolith REINOSO F, et al. Ce promoted Pd-Nb catalysts for γ-valerolactone
MnO x-CeO 2/La-Al 2O 3 catalyst and its properties for catalytic oxidation ring-opening and hydrogenation[J]. Green Chemistry, 2012, 14(12):
of toluene[J]. New Journal of Chemistry, 2018, 42(20): 16875-16885. 3318-3326.
[17] FARIA W L S, PEREZ C A C, CÉSAR D V, et al. In situ [27] MCMILLAN L, GILPIN L F, BAKER J, et al. The application of a
characterizations of Pd/Al 2O 3 and Pd/CeO 2/Al 2O 3 catalysts for supported palladium catalyst for the hydrogenation of aromatic
oxidative steam reforming of propane[J]. Applied Catalysis B: nitriles[J]. Journal of Molecular Catalysis A: Chemical, 2016, 411:
Environmental, 2009, 92(1/2): 217-224. 239-246.
[18] RODRIGUES L M T S, SILVA R B, ROCHA M G C, et al. Partial [28] DAI C Y, LI Y G, NING C L, et al. The influence of alumina phases
oxidation of methane on Ni and Pd catalysts: Influence of active on the performance of Pd/Al 2O 3 catalyst in selective hydrogenation
phase and CeO 2 modification[J]. Catalysis Today, 2012, 197(1): 137- of benzonitrile to benzylamine[J]. Applied Catalysis A: General,
143. 2017, 545: 97-103.
(上接第 2484 页) [16] SHI S W (施申伟), LI T (李婷), WANG Y (汪洋), et al. Preparation
of antibacterial hybrid silica nanoparticle and its application in
[10] ZHOU D J (周登健), YANG J J (杨建军), WU Q W (吴庆云), et al. polyurethane[J]. Acta Polymerica Sinica (高分子学报), 2019, 50(7):
Progress in modification and application of antibacterial 721-729.
polyurethane[J]. Polyurethane Industry (聚氨酯工业), 2019, 34(5): [17] LIANG H Y, LIU L X, LU J Y, et al. Castor oil-based cationic
1-4. waterborne polyurethane dispersions: Storage stability, thermo-
[11] PENG K M (彭开美), DING W (丁伟), TU W P (涂伟萍), et al. physical properties and antibacterial properties[J]. Industrial Crops &
Construction of guanidinium-rich polymers and their applications Products, 2018, 117: 169-178.
acta[J]. ChimicaSinica (化学学报), 2016, 74(9): 713-725. [18] HU L (胡隆), SU J Q (苏佳琦), LIN X (林兴), et al. Synthesis and
[12] ZHANG Z W (张孜文), YANG J J (杨建军), WU Q W (吴庆云), properties of castor oil-based waterbornepolyurethane wood coating
et al. Preparation and properties of UV curable PHMG-based cured through UV/air dual process[J]. Surface Technology (表面技
antibacterial nonionic waterborne polyurethane[J]. Fine Chemicals 术), 2019, 48(3): 219-227.
(精细化工), 2020. 37(9): 1799-1805. [19] ZHANG B (张彪), YAN F A (闫福安). Research on synthesis of
[13] WANG X C (王学川), LU X B (卢先博), QIANG T T (强涛涛). waterborne polyurethane-polyurea and its properties[J]. China
Determination of isocyanate group in polyurethane prepolymer[J]. Coating (中国涂料), 2019, 34(5): 35-39.
West Leather (西部皮革), 2009, 31(5): 18-19, 33. [20] TIMOFEEVA L M, KLESHCHEVA N A, MOROZ A F, et al.
[14] WANG Z X (王志新), HONG D (宏丹), LIU Y (刘洋), et al. The Secondary and tertiary polydiallylammonium salts: Novel polymers
antibacterial activity of polymyxins against mold was quantitatively with high antimicrobial activity[J]. Biomacromolecules, 2009,
determined by AGAR diffusion method[J]. Modern Food Science 10(11): 2976-2986.
and Technology (现代食品科技), 2019, 35(6): 251-257. [21] PENGK M, ZOU T, DING W, et al. Development of contact-killing
[15] LIU X J (刘秀菊). Experimental study on antibacterial properties of non-leaching antimicrobial guanidyl-functionalized polymers via
polyether ether ketone modified by silver nanoparticles on magnetron click chemistry[J]. Royal Society Chemistry Advance, 2017, 7(40):
sputtering[D]. Changchun: Jilin University (吉林大学), 2017. 24903-24913.