Page 210 - 《精细化工》2022年第3期
P. 210

·632·                             精细化工   FINE CHEMICALS                                 第 39 卷

            骤,极大地简化了反应的处理过程。                                   [7]   YANG Z X (杨志欣), LI X (李霞),  SHAN B S (单柏松), et al.
                                                                   Research progress of sophora flavonoids[J]. Chinese Traditional Patent
                (2)优化出一锅法合成黄酮醇的工艺条件为:                              Medicine (中成药), 2016, 38(5): 1119-1123.
                                                               [8]   VEITCH N G, GRAYER R J. Flavonoids and their glycosides,
            相应苯甲醛 1.0 mmol、2ʹ-羟基苯乙酮 1.2 mmol、                      including anthocyanins[J]. Nat Prod Rep, 2011, 28(10): 1626-1695.
            NaOH 10.3 mmol,无水乙醇为溶剂(10.2 mL),80  ℃              [9]   CHANG B Q (常柄权), LI B (李斌), YUAN R Y (袁瑞瑛), et al.
                                                                   Separation  and purification of  flavonoids in  Malus toringoides
            回流 3 h,冷却至室温后,加入 8.0 mL H 2 O 2 (质量                    (Rehd.) Hughes leaves with macroporous resins and evaluation of
                                                                   anti-inflammation activities in vitro[J]. Fine Chemicals (精细化工),
            分数 35%)、8.0 mL 水,室温下继续反应 3 h。                          2019, 36(6): 1149-1158.
                (3)利用此法合成不同取代基的黄酮醇,产率                          [10]  BIRD C W, COOKSON R C. Communications  the effect of
                                                                   incorporated cycloalkyl rings upon the rearrangement of neophyl-like
            均达到 85% 以上,较 文 献报道值 提 升 8.35%~                         radicals[J]. J Org Chem, 1959, 24(3): 441-442.
                                                               [11]  FOUGEROUSSE A, GONZALEZ E, BROUILLARD R. A convenient
            23.86%。一锅法合成工艺能有效提升反应的产率,                              method for synthesizing 2-aryl-3-hydroxy-4-oxo-4H-1-benzopyrans or
            具有原料易得、操作简单、产率高、绿色高效的特                                 flavonols[J]. J Org Chem, 2000, 65(2): 583-586.
                                                               [12]  ADAM W, GOLSCH D, HADJIARAPOGLOU L, et al. Epoxidation of
            点,可以作为黄酮醇类化合物简便合成的方法。                                  flavones by dimethyldioxirane[J]. J Org Chem, 1991, 56(26): 7292-7297.
                                                               [13]  WANG  Z R. Comprehensive organic name reactions and
            参考文献:                                                  reagents[M]. Hoboken: John Wiley & Sons Inc, 2010: 52-56.
                                                               [14]  WANG Q A (汪秋安), FANG W Q (方伟琴), LIAO T G (廖头根).
            [1]   SANTOS M C S, GONCALVES C F L, VAISMAN M, et al. Impact   Synthesis of 7,3ʹ,5ʹ-trisubstituted flavanones  and flavonols[J]. Journal
                 of flavonoids on thyroid function[J]. Food Chem  Toxicol, 2011,   of Hunan University (Natural Sciences) (湖南大学学报:  自然科学
                 49(10): 2495-2502.                                版), 2006, 33(6): 98-102.
            [2]   MEI Q G (梅青刚), YUAN W C (袁伟成), WANG C (王淳). Progress   [15]  YAP S, LOFT K J,  WOODMAN O  L,  et al.  Discovery of water-
                 in the synthesis of 3-hydroxyflavones[J]. Chin J Org Chem (有机化  soluble antioxidant flavonols without vasorelaxant activity[J]. J Chem
                 学), 2015, 35(1): 70-84.                           Med Chem, 2008, 3(10): 1572-1579.
            [3]   ZHOU Q (周强), WANG C (王淳), LI Y P (李云萍), et al. Synthesis   [16]  KRAUS G, ROY S. Direct synthesis of chrysosplenol D[J]. J Nat Prod,
                 and antibacterial activity of flavonols[J]. Chin J Appl Environ Biol   2008, 71(11): 1961-1962.
                 (应用与环境生物学报), 2017, 23(2): 232-237.            [17]  PANDURANGAN N, BOSE C,  BANERJI  A. Synthesis and
            [4]  YUE W  (乐薇), WANG J (王晶). Study on purification technology   antioxygenic activities of seabuckthorn flavone-3-ols and analogs[J].
                 of total favonoids from indocalamus leaves with polyamide resin[J].   Bioorg Med Chem Lett, 2011, 21(18): 5328-5330.
                 Fine Chemicals (精细化工), 2015, 32(11): 1230-1235.   [18]  GUNDUZ S, GOREN A  C, OZTURK T. Facile syntheses of
            [5]   SUN L L (孙莉莉), ZHAO Y M (赵永梅), LUO W (罗稳). Synthesis   3-hydroxyflavones[J]. Org Lett, 2012, 14(6): 1576-1579.
                 and biological evaluation of 7-hydroxyflavones[J]. Fine Chemicals   [19]  YOU J, FU  H Y, ZHAO D,  et al.  Flavonol dyes with different
                 (精细化工), 2016, 33(2): 172-175.                     substituents in  photopolymerization[J]. Journal of Photochemistry
            [6]   CAO X Y (曹小燕), LU H  Z (路宏朝), ZHANG Q (张强),  et al.   and Photobiology A: Chemistry, 2020, 386: 112097.
                 Design and synthesis of flavone-based fluorescent probe for cysteine   [20]  CHEN W L, MA S T, CHEN Y W, et al. A fluorogenic molecule for
                 detection and its application in living cells imaging[J]. Chinese Journal   probing islet amyloid using flavonoid as a scaffold design biochemistry
                 of Analytical Chemistry (分析化学), 2020, 48(8): 1033-1040.   [J]. Biochemistry, 2020, 59(15): 1482-1492.



            (上接第 603 页)                                            46(5): 103-108.
                                                               [16]  EDILENE C D N, ALANA  G S,  DERVAL S R. Use of a chain
            [7]   SU S, DUHME M, KOPITZKY R. Uncompatibilized  PBAT/PLA
                 blends: Manufacturability, miscibility and properties[J]. Materials,   extender as a dispersing agent of the CaCO 3 into PBAT  matrix[J].
                 2020, 13(21): 4897-4909.                          Journal of Composite Materials, 2020, 54(10): 1373-1382.
            [8]   GIGANTE V, CANESI I, CINELLI P, et al. Rubber toughening of   [17]  XIE X W, ZHANG C L, WENG Y X, et al. Effect of diisocyanates as
                 polylactic acid (PLA) with poly(butylene  adipate-co-terephthalate)   compatibilizer on the properties of BF/PBAT composites by in situ
                 (PBAT): Mechanical properties, fracture  mechanics  and analysis of   reactive  compatibilization, crosslinking and chain extension[J].
                 ductile-to-brittle behavior while varying temperature and test   Materials, 2020, 13(3): 806-818.
                 speed[J]. European Polymer Journal, 2019, 115: 125-137.     [18]  JIN Y J, MEN S, WENG Y X. An investigation of the impact of an
            [9]   WANG X (王鑫). Phase morphology and mechanism of the synergy   amino-ended hyperbranched polymer as a new type of modifier on
                 of nanoparticles and reactive compatibilization on strengthening and   the compatibility of PLA/PBAT blends[J]. Journal of Polymer
                 toughening PLA/PBAT immiscible blend[D].  Wuhan: Hubei   Engineering, 2018, 38(3): 223-229.
                 University of Technology (湖北工业大学), 2020.      [19]  DING Y, LU B,  WANG P L,  et al. PLA-PBAT-PLA tri-block
            [10]  WANG X Y  ( 王翔 宇 ), ZHANG  Y X ( 张玉霞 ). Tuning  of   copolymers: Effective compatibilizers for promotion of the
                 microstructure of PLA/PBAT/OMMT nanocomposite[J]. China   mechanical and rheological properties of PLA/PBAT blends[J].
                 Plastics (中国塑料), 2020, 34(4): 35-41.              Polymer Degradation and Stability, 2018, 147: 41-48.
            [11]  VATANSEVER E, ARSLAN D, SARUL D S, et al. Development of   [20]  SHI H ( 石慧 ). Effect of multi-epoxy chain extender on
                 CNC-reinforced PBAT nanocomposites with reduced percolation   microstructure and properties of PLA/PBAT blends and PLA/PBAT
                 threshold: A comparative study on the preparation method[J]. Journal   starch composites[D]. Haikou: Hainan University  (海南大学),
                 of Materials Science, 2020, 55(32): 15523-15537.     2017.
            [12]  CALDERARO M  P, CLAIRE IG  L  S, SANCHEZ E  M S,  et al.   [21]  HAO D D (郝冬冬), DING Y H (丁永红),  YAN Q Y (闫秋羽).
                 PBAT/hybrid nanofillers composites—Part 1: Oxygen and water   Polyethylene film filled with talc modified  by coupling agent[J].
                 vapor  permeabilities, UV barrier and mechanical properties[J].   Packaging Engineering (包装工程), 2020, 41(3): 145-149.
                 Journal of Applied Polymer Science, 2020, 137(46): 49522-49534.     [22]  SHU M Y (舒梦莹), WENG Y X (翁云宣), ZHANG C L (张彩丽).
            [13]  ZHAO  Y, ZHAO  B H, WEI B L,  et al. Enhanced compatibility   Influence of multi⁃componentepoxy chain-extensionagent on aging
                 between poly(lactic acid) and poly (butylene adipate-co-terephthalate)   resistance of chain-extensionmodified PBAT[J]. China Plastics (中国
                 by incorporation of  N-halamine  epoxy precursor[J]. International   塑料), 2020, 34(3): 33-39.
                 Journal of Biological Macromolecules, 2020, 165: 460-471.     [23]  JIANG A K (姜安坤), HUANG B W (黄笔武), LI D (李丹), et al.
            [14]  QIU S, ZHOU Y K, GEOFFREY W I N, et al. Optimizing interfacial   Study on the mixing properties of PP/CPE[J]. China Plastics Industry
                 adhesion in PBAT/PLA nanocomposite for biodegradable packaging   (塑料工业), 2010, 38(1): 73-75.
                 films[J]. Food Chemistry, 2021, 334: 127487-127492.     [24]  LI J W, LEI L, WU L B, et al. Enhancement of water vapor barrier
            [15]  WANG D (王冬), MENG Z (蒙钊), DING L (丁力). Influences of   properties of biodegradable poly(butylene adipate-co-terephthalate)
                 chain extender KL-E4370 on structure and properties of PLA/PBAT   films with highly oriented organomontmorillonite[J]. ACS Sustainable
                 composites[J]. Plastics Science and  Technology (塑料科技), 2018,   Chemistry and Engineering, 2018, 6(5): 6654-6662.
   205   206   207   208   209   210   211   212   213   214   215