Page 132 - 《精细化工》2022年第4期
P. 132

·768·                             精细化工   FINE CHEMICALS                                 第 39 卷

            [10]  RICHTER A P, BHARTI B, ARMSTRONG H B, et al. Synthesis and   simple process for lignin nanoparticle preparation[J]. Green Chemistry,
                 characterization of  biodegradable lignin nanoparticles with tunable   2016, 18(5): 1416-1422.
                 surface properties[J]. Langmuir, 2016, 32(25): 6468-6477.   [24]  QIU X, LI H, DENG Y, et al. The acetylation of alkali lignin and its
            [11]  UGARTONDO V,  MITJANS M, VINARDELL M P.  Comparative   use for spherical micelles preparation[J]. Acta Polymerica Sinica,
                 antioxidant and cytotoxic effects of lignins from different sources[J].   2014, (11): 1458-1464.
                 Bioresource Technology, 2008, 99(14): 6683-6687.   [25]  LERON  R B,  LI  M H. Solubility of carbon dioxide in a choline
            [12]  XING Z, YANG G. Crystallization, melting behavior, and wettability   chloride-ethylene glycol based deep eutectic solvent[J]. Thermochimica
                 of poly (ɛ-caprolactone) and poly  (ɛ-caprolactone)/poly   Acta, 2013, 551: 14-19.
                 (N-vinylpyrrolidone)  blends[J]. Journal of Applied Polymer   [26]  MATEOVIC T, KRIZNAR B, BGATAJ M, et al.  The influence of
                 Science, 2010, 115(5): 2747-2755.                 stirring  rate on  biopharmaceutical properties of Eudragit RS
            [13]  GAO C, WU J, ZHOU H, et al. Self-assembled blends of AB/BAB   microspheres[J]. Journal of Microencapsulation, 2002, 19(1): 29-36.
                 block  copolymers  prepared  through  dispersion  RAFT  [27]  IOANNOU K, NYDAL O J, ANGELI P. Phase inversion in dispersed
                 polymerization[J]. Macromolecules, 2016, 49(12): 4490-4500.   liquid-liquid flows[J]. Experimental Thermal and Fluid Science, 2005,
            [14]  DESAI M P, LABHASETWAR  V, AMIDON G L,  et al.   29(3): 331-339.
                 Gastrointestinal uptake of biodegradable microparticles: Effect of   [28]  LYU H, LIN Q, ZHANG K, et al. Facile fabrication of monodisperse
                 particle size[J]. Pharmaceutical Research, 1996, 13(12): 1838-1845.   polymer hollow spheres[J]. Langmuir, 2008, 24(23): 13736-13741.
            [15]  GAZIT Y, BAISH J W, SAFABAKHSH N, et al. Fractal characteristics   [29]  SUN M L (孙美丽), BAN J F (班俊峰), HUANG S Y (黄思玉), et al.
                 of tumor vascular architecture during tumor growth and regression[J].   Control of encapsulation efficiency  and drug loading  in PLGA
                 Microcirculation, 1997, 4(4): 395-402.            microsphere[J]. Journal of Guangdong Pharmaceutical University (广
            [16] WANG  L  ( 王磊 ). Extraction, modification and  comprehensive   东药学院学报), 2011, 27(6): 643-648.
                 utilization of lignin[D]. Jinan: Shandong Normal University (山东师  [30]  LIU M (刘蔓), DING J S (丁劲松).Recent progress in research of
                 范大学), 2012.                                       influence  factors of  drug loading in polymer  micelles[J].  Chinese
            [17]  CHENG L, DENG B, LUO W H, et al. pH-responsive lignin-based   Journal of Pharmaceuticals (中国医药工业杂志), 2017, 48(9):
                 nanomicelles for oral drug delivery[J]. Journal of Agricultural and   1257-1263.
                 Food Chemistry, 2020, 68(18): 5249-5258.      [31]  SUN M  M (孙苗苗),  WEI P H (魏培贺), KANG C (康纯),  et al.
            [18]  ZHOU Y, HAN Y, LI G, et al. Lignin-based hollow nanoparticles for   Preparation and drug loading properties of an injectable CS/PLLA-SA
                 controlled drug delivery: Grafting preparation using β-cyclodextrin/   composite hydrogel[J]. Fine Chemicals (精细化工), 2021, 38(2):
                 enzymatic-hydrolysis lignin[J]. Nanomaterials, 2019, 9(7): 1-11.   358-365.
            [19]  XIONG F, HAN  Y,  WANG S,  et al. Preparation and formation   [32]  ELKHESHEN S A, RADWAN M A. Sustained release microspheres
                 mechanism of renewable lignin hollow nanospheres with a single   of metoclopramide using poly (D, L-lactide-co-glycolide) copolymers[J].
                 hole by self-assembly[J]. ACS Sustainable Chemistry & Engineering,   Journal of Microencapsulation, 2000, 17(4): 425-435.
                 2017, 5(3): 2273-2281.                        [33]  LIU Y, LI  K, PAN J,  et al. Folic acid conjugated nanoparticles of
            [20]  HAN L, WU W, HUANG Z, et al. Preparation and characterization   mixed lipid monolayer shell and biodegradable polymer core for
                 of a novel fluorine-free and pH-sensitive hydrophobic porous diatomite   targeted delivery of docetaxel[J]. Biomaterials, 2010, 31(2): 330-338.
                 ceramic  as highly efficient sorbent for oil-water separation[J].   [34]  OUYANG W, ZHAO D, WANG Y, et al. Continuous flow conversion
                 Separation and Purification Technology, 2021, 254: 117620.   of biomass-derived  methyl levulinate into  γ-valerolactone using
            [21]  FEI P, ZENG F, ZHENG S,  et al. Acylation of  blueberry   functional metal organic frameworks[J]. ACS Sustainable Chemistry
                 anthocyanins with maleic acid: Improvement of the stability and its   & Engineering, 2018, 6(5): 6746-6752.
                 application potential in intelligent color indicator packing   [35]  DENG  Y  H, FENG X J,  ZHOU M S,  et al. Investigation of
                 materials[J]. Dyes and Pigments, 2021, 184: 108852.   aggregation and assembly of alkali lignin using iodine as a probe[J].
            [22]  ATA S,  RASOOL  A, ISLAM A,  et al. Loading of cefixime to pH   Biomacromolecules, 2011, 12(4): 1116-1125.
                 sensitive chitosan  based hydrogel and investigation of  controlled   [36]  HE Y, LIU H, XIE Z, et al. PVP and surfactant combined carrier as
                 release kinetics[J]. International Journal of Biological Macromolecules,   an effective absorption enhancer of poorly soluble astilbin  in vitro
                 2020, 155: 1236-1244.                             and  in vivo[J]. Drug Development and Industrial Pharmacy, 2014,
            [23]  LIEVONEN M, VALLE-DELGADO J J, MATTINEN M L, et al. A   40(2): 237-243.


            (上接第 740 页)                                            anchored exfoliated reduced graphene  oxide nanosheet hybrid as a
                                                                   highly efficient cocatalyst for CdS nanorods towards  enhanced
            [18]  BEN  A  M,  JO W K, ELHOUICHET H,  et al. Reduced graphene   photocatalytic hydrogen  production[J]. Applied Catalysis B:
                 oxide as an efficient support  for CdS-MoS 2 heterostructures for   Environmental, 2017, 212: 7-14.
                 enhanced photocatalytic H 2 evolution[J]. International  Journal  of   [24]  YANG M Q, HAN C, XU Y J, et al. Insight into the effect of highly
                 Hydrogen Energy, 2017, 42(26): 16449-16458.       dispersed MoS 2 versus layer-structured MoS 2 on the photocorrosion
            [19]  ZHANG  Z F (张转芳), TANG L (唐林), SUN L (孙立),  et al.   and photoactivity of CdS in graphene-CdS-MoS 2 composites[J]. The
                 Preparation of CuS/GO nanocomposite and its photocatalytic   Journal of Physical Chemistry C, 2015, 119(49): 27234-27246.
                 degradation activity[J]. Fine  Chhemicals (精细化工), 2019, 36(2):   [25]  YU X, DU R,  LI B,  et al. Biomolecule-assisted self-assembly of
                 239-242.                                          CdS/MoS 2/graphene hollow spheres as high-efficiency photocatalysts
            [20]  CHENG L, XIANG Q, LIAO Y, et al. CdS-based photocatalysts[J].   for hydrogen evolution without noble metals[J]. Applied Catalysis B:
                 Energy & Environmental Science, 2018, 11(6): 1362-1391.   Environmental, 2016, 182: 504-512.
            [21]  ZHANG J (张洁), TIAN J Z (田景芝), HAO X (郝欣),  et al.   [26]  LI P X, ZHAO H, YAN X Y, et al. Visible-light-driven photocatalytic
                 Synergistic effect of CDs/ZnO/g-C 3N 4 ternary component  for   hydrogen production coupled with  selective oxidation  of benzyl
                 photocatalytic degradation of dyes[J]. Fine Chhemicals (精细化工),   alcohol over CdS@MoS 2 heterostructures[J]. Science China Materials,
                 2019, 36(7): 1439-1445.                           2020, 63(11): 2239-2250.
            [22]  RXUE N N,WANG Z J, ZHANG W Q, et al. Preparation of NiCoP/   [27]  XU Z H, XU B T, QIAN K, et al. In situ growth of CuS nanoparticles
                 CdS and its photocatalytic activity in hydrogen evolution[J]. Modern   on g-C 3N 4 nanosheets for H 2 production and the degradation of
                 Chemical Industry, 2019, 39(10): 56-60.           organic pollutant under visible-light irradiation[J]. RSC  Advances,
            [23]  KUMAR D P, HONG S, REDDY D A, et al. Ultrathin MoS 2 layers   2019, 9 (44): 25638-25646.
   127   128   129   130   131   132   133   134   135   136   137