Page 132 - 《精细化工》2022年第4期
P. 132
·768· 精细化工 FINE CHEMICALS 第 39 卷
[10] RICHTER A P, BHARTI B, ARMSTRONG H B, et al. Synthesis and simple process for lignin nanoparticle preparation[J]. Green Chemistry,
characterization of biodegradable lignin nanoparticles with tunable 2016, 18(5): 1416-1422.
surface properties[J]. Langmuir, 2016, 32(25): 6468-6477. [24] QIU X, LI H, DENG Y, et al. The acetylation of alkali lignin and its
[11] UGARTONDO V, MITJANS M, VINARDELL M P. Comparative use for spherical micelles preparation[J]. Acta Polymerica Sinica,
antioxidant and cytotoxic effects of lignins from different sources[J]. 2014, (11): 1458-1464.
Bioresource Technology, 2008, 99(14): 6683-6687. [25] LERON R B, LI M H. Solubility of carbon dioxide in a choline
[12] XING Z, YANG G. Crystallization, melting behavior, and wettability chloride-ethylene glycol based deep eutectic solvent[J]. Thermochimica
of poly (ɛ-caprolactone) and poly (ɛ-caprolactone)/poly Acta, 2013, 551: 14-19.
(N-vinylpyrrolidone) blends[J]. Journal of Applied Polymer [26] MATEOVIC T, KRIZNAR B, BGATAJ M, et al. The influence of
Science, 2010, 115(5): 2747-2755. stirring rate on biopharmaceutical properties of Eudragit RS
[13] GAO C, WU J, ZHOU H, et al. Self-assembled blends of AB/BAB microspheres[J]. Journal of Microencapsulation, 2002, 19(1): 29-36.
block copolymers prepared through dispersion RAFT [27] IOANNOU K, NYDAL O J, ANGELI P. Phase inversion in dispersed
polymerization[J]. Macromolecules, 2016, 49(12): 4490-4500. liquid-liquid flows[J]. Experimental Thermal and Fluid Science, 2005,
[14] DESAI M P, LABHASETWAR V, AMIDON G L, et al. 29(3): 331-339.
Gastrointestinal uptake of biodegradable microparticles: Effect of [28] LYU H, LIN Q, ZHANG K, et al. Facile fabrication of monodisperse
particle size[J]. Pharmaceutical Research, 1996, 13(12): 1838-1845. polymer hollow spheres[J]. Langmuir, 2008, 24(23): 13736-13741.
[15] GAZIT Y, BAISH J W, SAFABAKHSH N, et al. Fractal characteristics [29] SUN M L (孙美丽), BAN J F (班俊峰), HUANG S Y (黄思玉), et al.
of tumor vascular architecture during tumor growth and regression[J]. Control of encapsulation efficiency and drug loading in PLGA
Microcirculation, 1997, 4(4): 395-402. microsphere[J]. Journal of Guangdong Pharmaceutical University (广
[16] WANG L ( 王磊 ). Extraction, modification and comprehensive 东药学院学报), 2011, 27(6): 643-648.
utilization of lignin[D]. Jinan: Shandong Normal University (山东师 [30] LIU M (刘蔓), DING J S (丁劲松).Recent progress in research of
范大学), 2012. influence factors of drug loading in polymer micelles[J]. Chinese
[17] CHENG L, DENG B, LUO W H, et al. pH-responsive lignin-based Journal of Pharmaceuticals (中国医药工业杂志), 2017, 48(9):
nanomicelles for oral drug delivery[J]. Journal of Agricultural and 1257-1263.
Food Chemistry, 2020, 68(18): 5249-5258. [31] SUN M M (孙苗苗), WEI P H (魏培贺), KANG C (康纯), et al.
[18] ZHOU Y, HAN Y, LI G, et al. Lignin-based hollow nanoparticles for Preparation and drug loading properties of an injectable CS/PLLA-SA
controlled drug delivery: Grafting preparation using β-cyclodextrin/ composite hydrogel[J]. Fine Chemicals (精细化工), 2021, 38(2):
enzymatic-hydrolysis lignin[J]. Nanomaterials, 2019, 9(7): 1-11. 358-365.
[19] XIONG F, HAN Y, WANG S, et al. Preparation and formation [32] ELKHESHEN S A, RADWAN M A. Sustained release microspheres
mechanism of renewable lignin hollow nanospheres with a single of metoclopramide using poly (D, L-lactide-co-glycolide) copolymers[J].
hole by self-assembly[J]. ACS Sustainable Chemistry & Engineering, Journal of Microencapsulation, 2000, 17(4): 425-435.
2017, 5(3): 2273-2281. [33] LIU Y, LI K, PAN J, et al. Folic acid conjugated nanoparticles of
[20] HAN L, WU W, HUANG Z, et al. Preparation and characterization mixed lipid monolayer shell and biodegradable polymer core for
of a novel fluorine-free and pH-sensitive hydrophobic porous diatomite targeted delivery of docetaxel[J]. Biomaterials, 2010, 31(2): 330-338.
ceramic as highly efficient sorbent for oil-water separation[J]. [34] OUYANG W, ZHAO D, WANG Y, et al. Continuous flow conversion
Separation and Purification Technology, 2021, 254: 117620. of biomass-derived methyl levulinate into γ-valerolactone using
[21] FEI P, ZENG F, ZHENG S, et al. Acylation of blueberry functional metal organic frameworks[J]. ACS Sustainable Chemistry
anthocyanins with maleic acid: Improvement of the stability and its & Engineering, 2018, 6(5): 6746-6752.
application potential in intelligent color indicator packing [35] DENG Y H, FENG X J, ZHOU M S, et al. Investigation of
materials[J]. Dyes and Pigments, 2021, 184: 108852. aggregation and assembly of alkali lignin using iodine as a probe[J].
[22] ATA S, RASOOL A, ISLAM A, et al. Loading of cefixime to pH Biomacromolecules, 2011, 12(4): 1116-1125.
sensitive chitosan based hydrogel and investigation of controlled [36] HE Y, LIU H, XIE Z, et al. PVP and surfactant combined carrier as
release kinetics[J]. International Journal of Biological Macromolecules, an effective absorption enhancer of poorly soluble astilbin in vitro
2020, 155: 1236-1244. and in vivo[J]. Drug Development and Industrial Pharmacy, 2014,
[23] LIEVONEN M, VALLE-DELGADO J J, MATTINEN M L, et al. A 40(2): 237-243.
(上接第 740 页) anchored exfoliated reduced graphene oxide nanosheet hybrid as a
highly efficient cocatalyst for CdS nanorods towards enhanced
[18] BEN A M, JO W K, ELHOUICHET H, et al. Reduced graphene photocatalytic hydrogen production[J]. Applied Catalysis B:
oxide as an efficient support for CdS-MoS 2 heterostructures for Environmental, 2017, 212: 7-14.
enhanced photocatalytic H 2 evolution[J]. International Journal of [24] YANG M Q, HAN C, XU Y J, et al. Insight into the effect of highly
Hydrogen Energy, 2017, 42(26): 16449-16458. dispersed MoS 2 versus layer-structured MoS 2 on the photocorrosion
[19] ZHANG Z F (张转芳), TANG L (唐林), SUN L (孙立), et al. and photoactivity of CdS in graphene-CdS-MoS 2 composites[J]. The
Preparation of CuS/GO nanocomposite and its photocatalytic Journal of Physical Chemistry C, 2015, 119(49): 27234-27246.
degradation activity[J]. Fine Chhemicals (精细化工), 2019, 36(2): [25] YU X, DU R, LI B, et al. Biomolecule-assisted self-assembly of
239-242. CdS/MoS 2/graphene hollow spheres as high-efficiency photocatalysts
[20] CHENG L, XIANG Q, LIAO Y, et al. CdS-based photocatalysts[J]. for hydrogen evolution without noble metals[J]. Applied Catalysis B:
Energy & Environmental Science, 2018, 11(6): 1362-1391. Environmental, 2016, 182: 504-512.
[21] ZHANG J (张洁), TIAN J Z (田景芝), HAO X (郝欣), et al. [26] LI P X, ZHAO H, YAN X Y, et al. Visible-light-driven photocatalytic
Synergistic effect of CDs/ZnO/g-C 3N 4 ternary component for hydrogen production coupled with selective oxidation of benzyl
photocatalytic degradation of dyes[J]. Fine Chhemicals (精细化工), alcohol over CdS@MoS 2 heterostructures[J]. Science China Materials,
2019, 36(7): 1439-1445. 2020, 63(11): 2239-2250.
[22] RXUE N N,WANG Z J, ZHANG W Q, et al. Preparation of NiCoP/ [27] XU Z H, XU B T, QIAN K, et al. In situ growth of CuS nanoparticles
CdS and its photocatalytic activity in hydrogen evolution[J]. Modern on g-C 3N 4 nanosheets for H 2 production and the degradation of
Chemical Industry, 2019, 39(10): 56-60. organic pollutant under visible-light irradiation[J]. RSC Advances,
[23] KUMAR D P, HONG S, REDDY D A, et al. Ultrathin MoS 2 layers 2019, 9 (44): 25638-25646.