Page 21 - 《精细化工》2022年第6期
P. 21
第 6 期 张 帆,等: 纳米纤维素基无机复合抗菌膜材料的研究进展 ·1087·
和的制备方法实现单一组分或多组分无机抗菌粒子 [10] LANG J Y (郎金燕), LU J L (鲁俊良), YANG J X (杨靖雪), et al.
与纳米纤维素复合制备均一稳定且持久抗菌的纳米 Recent research progress of cellulose nanofiber hybrid and composite
materials[J]. Journal of Capital Normal University (首都师范大学学
纤维素基无机抗菌材料产品仍是需要思考的方向; 报), 2021, 42(1): 89-96.
(2)从实际应用来讲,纳米纤维素、纤维素衍生物 [11] HONG F (洪帆), SONG J (宋洁), BAI J (白洁), et al. Research
progress on functional modification of bacterial cellulose [J]. Fine
及共聚物的制备过程中采用的试剂在抗菌膜领域应 Chemicals (精细化工), 2021, 38(12): 2377-2384.
用还存在安全隐患,因此,如何开发绿色环保的改 [12] ZHANG Y (张燕), ZHANG M T (张铭涛), SHEN X F (沈晓飞),
性方法,进一步提高纳米纤维素的高值化应用,将 et al. Recent progress of preparation of nano-cellulose [J]. Journal of
Cellulose Science and Technology (纤维素科学与技术), 2020,
会是研究重点之一。 28(3): 49-58.
基于此,作者认为,在今后的研究中,可从以 [13] ZENG A R (曾安然), JI S F (吉顺峰), ZENG A R (曾安蓉).
Preparation and properties of chitosan/cellulose/nano-TiO 2 composite
下三点开展:(1)纳米纤维素与无机抗菌粒子的界
membrane[J]. Plastics (塑料), 2021, 50(5): 93-97, 102.
面作用机制的深入研究,有助于指导纳米纤维素基 [14] ABDALKARIM S Y H, YU H Y, WANG C, et al. Sheet-like
无机复合材料的结构、形貌与性能之间关系,对设 cellulose nanocrystal-ZnO nanohybrids as multifunctional
reinforcing agents in biopolyester composite nanofibers with
计功能纳米纤维素基无机复合材料具有一定的科学 ultrahigh UV-Shielding and antibacterial performances[J]. ACS
意义和实际意义;(2)纳米纤维素在特定条件下具 Applied Bio Materials, 2018, 1(3): 714-727.
[15] ZHANG N C (张念椿), AO Y Y (敖玉银), DING E Y (丁恩勇),
有自组装行为,采用 Pickering 乳液聚合法、乳液聚
et al. Aqueous synthesis of nano-silver/cellulose nanocrystalline
合法等常规方法制备纳米纤维素基复合材料乳液具 composites and antibacterial activities [J]. Materials Research and
有重要研究价值,为推动纳米纤维素基复合材料的 Application (材料研究与应用), 2014, 8(3): 160-164.
[16] FAN T F(范腾飞), MA J X(马金霞).Preparation and application of
实际应用发展提供理论依据;(3)开发抗菌聚合物- nano-sized zinc oxide/cellulose composites: A review[J]. Transactions
无机抗菌粒子/纳米纤维素复合抗菌材料,在协同增 of China Pulp and Paper(中国造纸学报), 2017, 32(4): 53-59.
强抗菌性的同时,有望解决无机抗菌粒子与纳米纤 [17] FU F Y, LI L Y, LIU L J, et al. Construction of cellulose based ZnO
anocomposite films with antibacterial properties through one-step
维素界面结合力的问题,为纳米纤维素基复合抗菌 coagulation[J]. ACS Applied Materials Interfaces, 2015, 7(4): 2597-
膜材料的制备开辟更多新的应用途径。 2606.
[18] MA W (马威), TUO T T (拓婷婷), ZHANG S F (张淑芬), et al.
参考文献: Research development of antibacterial agents[J]. Fine Chemicals (精
细化工), 2012, 29 (6): 521-525, 536.
[1] LYU P F, LU X M, WANG L, et al. Nanocellulose-based functional [19] FAN L (樊丽), LIU P T (刘鹏涛), LIU X L (刘新亮). Preparation
materials: From chiral photonics to soft actuator and energy storage and characterization of silver-loaded nanocrystalline cellulose[J].
[J]. Advanced Functional Materials, 2021, 31(45): 2104991. Transactions of China Pulp and Paper (中国造纸学报), 2019, 34 (2):
[2] XIONG R, LU C H, ZHANG W, et al. Facile synthesis of tunable
8-13.
silver nanostructures for antibacterial application using cellulose
[20] LI S M, JIA N, MA M G, et al. Cellulose-silver nanocomposites:
nanocrystals[J]. Carbohydrate Polymers, 2013, 95: 214-219. Microwave-assisted synthesis, characterization, their thermal
[3] XIONG R, LU C H, WANG Y R, et al. Nanofibrillated cellulose as stability, and antimicrobial property[J]. Carbohydrate Polymers,
the support and reductant for the facile synthesis of Fe 3O 4/Ag 2011, 86(2): 441-447.
nanocomposites with catalytic and antibacterial activity[J]. Journal of [21] FENG Z Y (冯智莹), WANG Z (王忠), GE H (葛昊), et al.
Materials Chemistry A, 2013, 1(47): 14910-14918. Preparation and characterization of antibacterial cellulose/silver
[4] WEI J (魏洁), SHAO Z Q (邵自强). Research progress in the nanoparticles films[J]. China Plastics Industry (塑料工业), 2015,
application nanocellulose materials in functional film materials[J]. 43(6): 13-17, 22.
Materials Review (材料导报), 2021, 35(1): 1203-1211.
[5] CHEN L (陈璐), DONG Q F (董庆丰), WANG J J (王敬敬), et al. [22] WANG W, YU Z L, ALSAMMARRAIE F K, et al. Properties and
antimicrobial activity of polyvinyl alcohol-modified bacterial
Research and progress of cellulose-based biodegradable and
nanocellulose packaging films incorporated with silver nanoparticles[J].
bacteriostasis food packaging materials[J]. Packaging Engineering
(包装工程), 2021, 42(5): 1-12. Food Hydrocolloids, 2020, 100: 105411.
[6] KANG X O (康晓鸥), YI L H (易兰花), DENG L L (邓丽莉), et al. [23] SARWAR M S, NIAZI M B K, JAHAN Z, et al. Preparation and
Nanocellulose-based antibacterial composites and their applications characterization of PVA/nanocellulose/Ag nanocomposite films for
in food packaging: A review[J]. Food Science (食品科学), 2019, antimicrobial food packaging[J]. Carbohydrate Polymers, 2018, 184:
41(11): 317-326. 453-464.
[7] YIGITBASI J K, LACIN O, DEMIR M, et al. A sustainable [24] FORTUNATI E, ARMENTANO I, ZHOU Q, et al. Multifunctional
preparation of catalytically active and antibacterial cellulose metal bionanocomposite films of poly (lactic acid), cellulose nanocrystals
nanocomposite via ball milling of cellulose[J]. Green Chemistry, and silver nanoparticles[J]. Carbohydrate Polymers, 2012, 87(2):
2019, 22: 455-464. 1596-1605.
[8] MONTAZER M, HARIFI T. New approaches and future aspects of [25] WON K S, JI H Y, WON H P, et al. Antimicrobial cellulose acetate
antibacterial food packaging: From nanoparticles coating to nanofibers nanofibers containing silver nanoparticles[J]. Carbohydrate Polymers,
and nanocomposites[J]. Food Packaging, 2017, 16: 533-565. 2006, 65: 430-434.
[9] XU C, CHEN W, GAO H, et al. Cellulose nanocrystal/silver [26] HU Z, MENG Q, LIU R, et al. Physical study of the primary and
(CNC/Ag) thin-film nanocomposite nanofiltration membranes with secondary photothermal events in gold/cellulose nanocrystals
multifunctional properties[J]. Environmental Science: Nano, 2020, (AuNP/CNC) nanocomposites embedded in PVA matrices[J]. ACS
7(3): 803-816. Sustainable Chemistry & Engineering, 2017, 5: 1601-1609.