Page 22 - 《精细化工》2022年第6期
P. 22

·1088·                            精细化工   FINE CHEMICALS                                 第 39 卷

            [27]  DONG Y Y (董闫闫). Silver-filled antibacterial cellulose composites:   assembly in cellulose network[J]. Journal of Colloid and Interface
                 Synthesis, properties and mechanism [D]. Beijing: Beijing Forestry   Science, 2020, 575: 317-325.
                 University (北京林业大学), 2018.                    [45]  HENRY A, PLUMEJEAU S, HEUX L,  et al. Conversion  of
            [28]  DONG Y Y, LI S M, MA M G, et al. Compare study cellulose/Ag   nanocellulose aerogel into TiO 2 and TiO 2@C nano-thorns by direct
                 composites using  fructose and glucose as reducing  reagents by   anhydrous mineralization with TiCl 4 evaluation of electrochemical
                 hydrothermal method[J]. Carbohydrate Polymers, 2014, 106: 14-21.   properties in Li batteries[J]. ACS Applied Materials Interfaces, 2015,
            [29]  FU L  H,  LIU B, MENG  L Y, et al. Comparative study of   7(27): 14584-14592.
                 cellulose/Ag nanocomposites using four cellulose types[J]. Materials   [46]  SCHÜTZ C, SORT J, BACSIK Z, et al. Hard and transparent films
                 Letters, 2016, 171: 277-280.                      formed by nanocellulose-TiO 2 nanoparticle hybrids[J]. PLoS One,
            [30]  ESPITIA P J P, SOARES N D F, COIMBRA J S D, et al. Zinc oxide   2012, 7(10): 45828.
                 nanoparticles: Synthesis, antimicrobial activity and food  packaging   [47]  RATHOD M, PARESHKUMAR G M, HALDAR  S,  et al.
                 applications[J]. Food and Bioprocess Technology, 2012, 5(5): 1447-   Nanocellulose/TiO 2 composites:  Preparation, characterization and
                 1464.                                             application in the photocatalytic degradation of a potential endocrine
            [31]  MARTINS N, FREIRE  C, NETO  C P, et  al. Antibacterial paper   disruptor, mefenamic acid, in aqueous  media[J]. Photochemical  &
                 based on composite coatings of nanofibrillated cellulose and ZnO[J].   Photobiological Sciences, 2018, 17 (10): 1301-1309.
                 Colloids and Surfaces A: Physicochemical and Engineering Aspects,   [48]  WESARG F, SCHLOTT F, GRABOW J, et al. In situ synthesis of
                 2013, 417: 111-119.                               photocatalytically active hybrids consisting of bacterial nanocellulose
            [32]  FU F Y, LI L Y, LIU L J, et al. Construction of cellulose based ZnO   and anatase nanoparticles[J]. Langmuir, 2012, 28 (37): 13518-13525.
                 anocomposite films with antibacterial properties through one-step   [49]  EL-WAKIL N A, HASSAN  E A, ABOU-ZEID R E, et al.
                 coagulation[J]. ACS Applied Materials Interfaces, 2015, 7(4):   Development of wheat gluten/nanocellulose/titanium dioxide
                 2597-2606.                                        nanocomposites for active food packaging[J]. Carbohydrate
            [33]  HU W, CHEN S, YANG J, et al. Functionalized bacterial cellulose   Polymers, 2015, 124: 337-346.
                 derivatives and nanocomposites[J]. Carbohydrate Polymers, 2014,   [50]  HAMAD H,  BAILON-GARCIA  E, TORRES S M, et al.
                 101: 1043-1060.                                   Physiochemical  properties of new  cellulose-TiO 2 composite for the
            [34]  LUO Z H, LIU J, LIN H, et al. In situ fabrication of nano ZnO/BCM   removal of water pollutants development special interactions and
                 biocomposite based on ma modified bacterial cellulose membrane for   performances by cellulose functionalization[J]. Journal of
                 antibacterial and wound healing[J]. International  Journal of   Environmental Chemical Engineering, 2018, 6 (4): 5032-5041.
                 Nanomedicine, 2020, 15: 1-15.                 [51]  ZHAN  C B, LI  Y X, SHARMA P R, et al. A study of TiO 2
            [35]  SHAHMOHAMMADI F, ALMASI H. Morphological, physical,   nanocrystal growth and environmental remediation capability of
                 antimicrobial and  release properties  of ZnO nanoparticles-loaded   TiO 2/CNC nanocomposites[J]. RSC Advances, 2019,  9: 40565-
                 bacterial cellulose films[J]. Carbohydrate Polymers, 2016, 149: 8-19.   40576.
            [36]  PIRSA S, SHAMUSI T. Intelligent and active packaging of chicken   [52]  ARULARASU M  V, HARB M, SUNDARAM R. Synthesis and
                 thigh meat by conducting nano structure cellulose-polypyrrole-ZnO   characterization of cellulose/TiO 2 nanocomposite: Evaluation  of  in
                 film[J]. Materials Science & Engineering C, 2019, 102: 798-809.     vitro antibacterial and in  silico  molecular docking studies[J].
            [37]  LEFATSHE K, MUIVA C M, KEBAABETSWE L P. Extraction of   Carbohydrate Polymers, 2020, 249: 116868.
                 nanocellulose and  in-situ  casting of ZnO/cellulose  nanocomposite   [53]  AZIZI S, AHMAD M, HUSSEIN M, et al. Synthesis, antibacterial
                 with enhanced photocatalytic and antibacterial activity[J]. Carbohydrate   and thermal studies of cellulose nanocrystal stabilized ZnO-Ag
                 Polymers, 2017, 164: 301-303.                     heterostructure nanoparticles [J]. Molecules, 2013, 18: 6269-6280.
            [38]  YU H Y, CHEN G Y, WANG Y B, et al. A facile one-pot route for   [54]  LI Y, TIAN T, YANG C, et al. Nanocomposite film containing
                 preparing cellulose nanocrystal/zinc oxide  nanohybrids  with  high   fibrous cellulosescaffold and Ag/TiO 2 nanoparticles and its
                 antibacterial and photocatalytic  activity [J]. Cellulose, 2014, 22(1):   antibacterial activity [J]. Polymers, 2018, 10: 1052-1066.
                 261-273.                                      [55]  HE G Y (何光裕), MA K (马凯), HOU J H (侯景会), et al. Green
            [39]  ABDALKARIM S Y  H,  YU H Y,  WANG  C,  et al. Sheet-like   synthesis of Ag@ graphene nano-composite and its antibacterial
                 cellulose nanocrystal-ZnO nanohybrids  as  multifunctional reinforcing   activity[J]. Fine Chemicals (精细化工), 2012, 29(9): 840-843.
                 agents in biopolyester composite nanofibers with ultrahigh UV-   [56]  ANIRUDHAN T  S, DEEPA J  R.  Nano-zinc oxide incorporated
                 shielding and antibacterial performances[J]. ACS Applied Bio   graphene oxide/nanocellulose composite for the adsorption and photo
                 Materials, 2018, 1(3): 714-727.                   catalytic degradation of ciprofloxacin hydrochloride from aqueous
            [40]  HU K, JOHN A, MUN S, et al. Preparation and characterization of   solutions[J]. Journal of Colloid and Interface Science, 2017, 490:
                 cellulose-ZnO nanolayer film by blending method[J]. Macromolecular   343-356.
                 Research, 2015, 23(9): 814-818.               [57]  ANGELOVA T, RANGELOVA N, GEORGIEVA N, et al. Study of
            [41]  MA J X, ZHU W H, TIAN Y J, et al. Preparation of zinc oxide-starch   potential biomedical application of sol-gel  derived  Zn doped
                 nanocomposite and its application on coating[J]. Nanoscale Research   SiO 2-hydroxypropyl cellulose nanohybrids[J]. Materials Science &
                 Letters, 2016, 11: 200.                           Engineering C, 2019, 100: 608-615.
            [42]  INDUMATHI M  P, SARAL S K, RAJARAJESWARI G R.   [58]  DAS D, DEY  R, DAS S,  et al. Nano-Ag/DLC/Cellulose  free-
                 Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/   standing films towards anti-bacterial  and bio-compatible futuristic
                 ZnO  nano  composite films  with optimal oxygen permeability and   bandage applications[J]. Journal of Polymers and the Environment,
                 hydrophobicity  for extending the shelf life of black grape fruits[J].   2020, 28(1): 284-294.
                 International Journal of Biological Macromolecules, 2019, 132:   [59]  ZHANG L, ZHENG S, HU  Z H,  et al. Preparation of polyvinyl
                 1112-1120.                                        alcohol/bacterial-cellulose-coated biochar-nanosilver antibacterial
            [43]  ZHANG J T (张静涛), WANG X Y (王雪莹), LIU X (刘行), et al.   composite membranes[J]. Applied Sciences, 2020, 10(3): 752.
                 Antibacterial activity of titanium dioxide nanocomposites[J]. Fine   [60]  CUI S (崔升), YUAN M Y (袁美玉),FU J J (付俊杰),  et al.
                 Chemicals (精细化工), 2018, 35 (9): 1511-1517.        Research progress of chitosan and  its metal particle composite
            [44]  RAGHUWANSHI  V S, GARUSINGHE U M,  BATCHELOR W,   materials for antibacterial  application[J]. Fine Chemicals (精细化
                 et al. Polyamide-amineepichlorohydrin (PAE) induced TiO 2 nanoparticles   工), 2021, 38 (9): 1757-1778.
   17   18   19   20   21   22   23   24   25   26   27