Page 22 - 《精细化工》2022年第6期
P. 22
·1088· 精细化工 FINE CHEMICALS 第 39 卷
[27] DONG Y Y (董闫闫). Silver-filled antibacterial cellulose composites: assembly in cellulose network[J]. Journal of Colloid and Interface
Synthesis, properties and mechanism [D]. Beijing: Beijing Forestry Science, 2020, 575: 317-325.
University (北京林业大学), 2018. [45] HENRY A, PLUMEJEAU S, HEUX L, et al. Conversion of
[28] DONG Y Y, LI S M, MA M G, et al. Compare study cellulose/Ag nanocellulose aerogel into TiO 2 and TiO 2@C nano-thorns by direct
composites using fructose and glucose as reducing reagents by anhydrous mineralization with TiCl 4 evaluation of electrochemical
hydrothermal method[J]. Carbohydrate Polymers, 2014, 106: 14-21. properties in Li batteries[J]. ACS Applied Materials Interfaces, 2015,
[29] FU L H, LIU B, MENG L Y, et al. Comparative study of 7(27): 14584-14592.
cellulose/Ag nanocomposites using four cellulose types[J]. Materials [46] SCHÜTZ C, SORT J, BACSIK Z, et al. Hard and transparent films
Letters, 2016, 171: 277-280. formed by nanocellulose-TiO 2 nanoparticle hybrids[J]. PLoS One,
[30] ESPITIA P J P, SOARES N D F, COIMBRA J S D, et al. Zinc oxide 2012, 7(10): 45828.
nanoparticles: Synthesis, antimicrobial activity and food packaging [47] RATHOD M, PARESHKUMAR G M, HALDAR S, et al.
applications[J]. Food and Bioprocess Technology, 2012, 5(5): 1447- Nanocellulose/TiO 2 composites: Preparation, characterization and
1464. application in the photocatalytic degradation of a potential endocrine
[31] MARTINS N, FREIRE C, NETO C P, et al. Antibacterial paper disruptor, mefenamic acid, in aqueous media[J]. Photochemical &
based on composite coatings of nanofibrillated cellulose and ZnO[J]. Photobiological Sciences, 2018, 17 (10): 1301-1309.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, [48] WESARG F, SCHLOTT F, GRABOW J, et al. In situ synthesis of
2013, 417: 111-119. photocatalytically active hybrids consisting of bacterial nanocellulose
[32] FU F Y, LI L Y, LIU L J, et al. Construction of cellulose based ZnO and anatase nanoparticles[J]. Langmuir, 2012, 28 (37): 13518-13525.
anocomposite films with antibacterial properties through one-step [49] EL-WAKIL N A, HASSAN E A, ABOU-ZEID R E, et al.
coagulation[J]. ACS Applied Materials Interfaces, 2015, 7(4): Development of wheat gluten/nanocellulose/titanium dioxide
2597-2606. nanocomposites for active food packaging[J]. Carbohydrate
[33] HU W, CHEN S, YANG J, et al. Functionalized bacterial cellulose Polymers, 2015, 124: 337-346.
derivatives and nanocomposites[J]. Carbohydrate Polymers, 2014, [50] HAMAD H, BAILON-GARCIA E, TORRES S M, et al.
101: 1043-1060. Physiochemical properties of new cellulose-TiO 2 composite for the
[34] LUO Z H, LIU J, LIN H, et al. In situ fabrication of nano ZnO/BCM removal of water pollutants development special interactions and
biocomposite based on ma modified bacterial cellulose membrane for performances by cellulose functionalization[J]. Journal of
antibacterial and wound healing[J]. International Journal of Environmental Chemical Engineering, 2018, 6 (4): 5032-5041.
Nanomedicine, 2020, 15: 1-15. [51] ZHAN C B, LI Y X, SHARMA P R, et al. A study of TiO 2
[35] SHAHMOHAMMADI F, ALMASI H. Morphological, physical, nanocrystal growth and environmental remediation capability of
antimicrobial and release properties of ZnO nanoparticles-loaded TiO 2/CNC nanocomposites[J]. RSC Advances, 2019, 9: 40565-
bacterial cellulose films[J]. Carbohydrate Polymers, 2016, 149: 8-19. 40576.
[36] PIRSA S, SHAMUSI T. Intelligent and active packaging of chicken [52] ARULARASU M V, HARB M, SUNDARAM R. Synthesis and
thigh meat by conducting nano structure cellulose-polypyrrole-ZnO characterization of cellulose/TiO 2 nanocomposite: Evaluation of in
film[J]. Materials Science & Engineering C, 2019, 102: 798-809. vitro antibacterial and in silico molecular docking studies[J].
[37] LEFATSHE K, MUIVA C M, KEBAABETSWE L P. Extraction of Carbohydrate Polymers, 2020, 249: 116868.
nanocellulose and in-situ casting of ZnO/cellulose nanocomposite [53] AZIZI S, AHMAD M, HUSSEIN M, et al. Synthesis, antibacterial
with enhanced photocatalytic and antibacterial activity[J]. Carbohydrate and thermal studies of cellulose nanocrystal stabilized ZnO-Ag
Polymers, 2017, 164: 301-303. heterostructure nanoparticles [J]. Molecules, 2013, 18: 6269-6280.
[38] YU H Y, CHEN G Y, WANG Y B, et al. A facile one-pot route for [54] LI Y, TIAN T, YANG C, et al. Nanocomposite film containing
preparing cellulose nanocrystal/zinc oxide nanohybrids with high fibrous cellulosescaffold and Ag/TiO 2 nanoparticles and its
antibacterial and photocatalytic activity [J]. Cellulose, 2014, 22(1): antibacterial activity [J]. Polymers, 2018, 10: 1052-1066.
261-273. [55] HE G Y (何光裕), MA K (马凯), HOU J H (侯景会), et al. Green
[39] ABDALKARIM S Y H, YU H Y, WANG C, et al. Sheet-like synthesis of Ag@ graphene nano-composite and its antibacterial
cellulose nanocrystal-ZnO nanohybrids as multifunctional reinforcing activity[J]. Fine Chemicals (精细化工), 2012, 29(9): 840-843.
agents in biopolyester composite nanofibers with ultrahigh UV- [56] ANIRUDHAN T S, DEEPA J R. Nano-zinc oxide incorporated
shielding and antibacterial performances[J]. ACS Applied Bio graphene oxide/nanocellulose composite for the adsorption and photo
Materials, 2018, 1(3): 714-727. catalytic degradation of ciprofloxacin hydrochloride from aqueous
[40] HU K, JOHN A, MUN S, et al. Preparation and characterization of solutions[J]. Journal of Colloid and Interface Science, 2017, 490:
cellulose-ZnO nanolayer film by blending method[J]. Macromolecular 343-356.
Research, 2015, 23(9): 814-818. [57] ANGELOVA T, RANGELOVA N, GEORGIEVA N, et al. Study of
[41] MA J X, ZHU W H, TIAN Y J, et al. Preparation of zinc oxide-starch potential biomedical application of sol-gel derived Zn doped
nanocomposite and its application on coating[J]. Nanoscale Research SiO 2-hydroxypropyl cellulose nanohybrids[J]. Materials Science &
Letters, 2016, 11: 200. Engineering C, 2019, 100: 608-615.
[42] INDUMATHI M P, SARAL S K, RAJARAJESWARI G R. [58] DAS D, DEY R, DAS S, et al. Nano-Ag/DLC/Cellulose free-
Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ standing films towards anti-bacterial and bio-compatible futuristic
ZnO nano composite films with optimal oxygen permeability and bandage applications[J]. Journal of Polymers and the Environment,
hydrophobicity for extending the shelf life of black grape fruits[J]. 2020, 28(1): 284-294.
International Journal of Biological Macromolecules, 2019, 132: [59] ZHANG L, ZHENG S, HU Z H, et al. Preparation of polyvinyl
1112-1120. alcohol/bacterial-cellulose-coated biochar-nanosilver antibacterial
[43] ZHANG J T (张静涛), WANG X Y (王雪莹), LIU X (刘行), et al. composite membranes[J]. Applied Sciences, 2020, 10(3): 752.
Antibacterial activity of titanium dioxide nanocomposites[J]. Fine [60] CUI S (崔升), YUAN M Y (袁美玉),FU J J (付俊杰), et al.
Chemicals (精细化工), 2018, 35 (9): 1511-1517. Research progress of chitosan and its metal particle composite
[44] RAGHUWANSHI V S, GARUSINGHE U M, BATCHELOR W, materials for antibacterial application[J]. Fine Chemicals (精细化
et al. Polyamide-amineepichlorohydrin (PAE) induced TiO 2 nanoparticles 工), 2021, 38 (9): 1757-1778.