Page 74 - 《精细化工》2022年第6期
P. 74

·1140·                            精细化工   FINE CHEMICALS                                 第 39 卷

            是一种良好的助溶剂;沉积温度或沉积压力的改变                                 for efficient methane combustion[J]. ACS  Applied Materials &
                                                                   Interfaces, 2020, 12(50): 56095-56107.
            均会对 Pd-Cu 纳米粒子的粒径产生影响;在 2 g 氧                      [16]  DU J C, LI H, WANG C X, et al. Improved catalytic activity over
            化铝球、Pd 理论负载量 0.5%、Cu/Pd 理论物质的量                         P-doped ceria-zirconia-alumina supported palladium catalysts for methane
                                                                   oxidation[J]. Catalysis Communications, 2020, 141(15): 106012.
            比为 1∶1,沉积时间 3.0 h、沉积温度 65  ℃、沉积                    [17]  WANG  Y X, HUANG H J, BAXTER N C,  et al. Guaiacol
            压力 15 MPa、8 mL 二氯甲烷的工艺条件下,能获得                          hydrodeoxygenation over Pd catalyst with mesoporous ZSM-5
                                                                   support synthesized by solid-state crystallization[J]. Catalysis Today,
            平均粒径较小(1.81 nm)的 Pd-Cu 纳米粒子。关于                         2020, 358(1): 60-67.
                                                               [18]  YANG X Q, MA X Y, HAN D W, et al. Efficient removal of toluene
            Pd(acac) 2 与Cu(acac) 2 在氧化铝表面的竞争吸附有待于
                                                                   over palladium supported on hierarchical alumina  microspheres
            后续理论分析与实验研究。                                           catalyst[J]. Catalysis Today, 2020, 375(1): 352-359.
                                                               [19]  ERCOLINO G, KARIMI S, STELMACHOWSKI P, et al. Catalytic
            参考文献:                                                  combustion of residual methane on alumina monoliths and open cell
                                                                   foams coated with Pd/Co 3O 4[J]. Chemical Engineering Journal,
            [1]   GONSER  U. Nano-structured materials[J]. Hyperfine Interactions,   2017, 326(15): 339-349.
                 1994, 94(1): 2261-2264.                       [20]  DING Y Q, JIA Y Y, JIANG M X, et al. Superior catalytic activity of
            [2]   HU S F (胡帅飞), PANG Z H (庞志华), TAN W C (谭万春), et al.   Pd-based catalysts upon tuning  the structure of the ceria-zirconia
                 Recent progress in research into supported nano-metal  material[J].   support for methane  combustion[J]. Chemical  Engineering Journal,
                 Environmental Science & Technology (环境科学与技术), 2014,   2021, 416(15): 129150.
                 37(9): 65-69, 75.                             [21]  YANG L, PAN  Z D,  WANG S  Q,  et al. Highly  effective
            [3]   LIU Y X (刘迎新), ZHANG L (张粮), ZHANG K Y (张凯悦), et al.   Pd/MgO/γ-Al 2O 3 catalysts for CO oxidative coupling to dimethyl
                 Synthesis of pyrrolidone compounds  via reductive amination of   oxalate: The effect of MgO coating  on  γ-Al 2O 3[J]. ACS Applied
                 levulinic acid with nitriles over Pd catalysts[J]. Fine Chemicals (精细  Materials & Interfaces, 2021, 13(24): 28064-28071.
                 化工), 2021, 38(12): 2531-2538.                 [22]  MA Y, ZHANG  G K. Sepiolite nanofiber-supported platinum
            [4]   JU J F (鞠剑锋), WU D  H (吴东辉), HUA P (华平), et al.   nanoparticle catalysts toward the catalytic oxidation of formaldehyde
                 Preparation of C-doped porous TiO 2  supported RuAg catalyst for   at ambient temperature: Efficient and stable performance  and
                 methanol electro-oxidation[J]. Fine Chemicals (精细化工), 2021,   mechanism[J]. Chemical Engineering Journal, 2016, 288(15): 70-78.
                 38(3): 566-571.                               [23]  GAN T, CHU  X F, QI H,  et al. Pt/Al 2O 3 with ultralow Pt-loading
            [5]   CHEN X H, ZHENG Y,  HUANG F,  et al. Catalytic activity and   catalyze toluene oxidation: Promotional synergistic effect of Pt
                 stability over nanorod-like ordered mesoporous phosphorus-doped   nanoparticles and Al 2O 3 support[J]. Applied Catalysis B: Environmental,
                 alumina supported palladium catalysts for methane[J]. ACS Catalysis,   2019, 257(15): 117943.
                 2018, 8(12): 11016-11028.                     [24]  ZHANG X, ZHANG M, DENG Y, et al. A stable low-temperature
            [6]   CHEN X  H, ZHENG Y, CHEN  Y  L,  et al. Improved methane   H 2-production catalyst by crowding Pt on α-MoC[J]. Nature, 2021,
                 oxidation activity of P-doped γ-Al 2O 3 supported palladium catalysts   589(7842): 396-401.
                 by tailoring the oxygen mobility and electronic properties[J].   [25]  CHEN L X, STERBINSKY G E, TAIT S L. Synthesis of platinum
                 International Journal of Hydrogen Energy, 2019, 44(51): 27772-27783.   single-site centers through metal-ligand self-assembly on powdered
            [7]   CALZADA L A, COLLINS S E, HAN C W, et al. Synergetic effect of   metal oxide supports[J]. Journal of Catalysis, 2018, 365: 303-312.
                 bimetallic Au-Ru/TiO 2 catalysts for complete oxidation of methanol[J].   [26]  ABOUKAIS A, SKAF M, HANY S, et al. A comparative study of
                 Applied Catalysis B: Environmental, 2017, 207(15): 79-92.   Cu, Ag and Au doped CeO 2 in the total oxidation of volatile organic
            [8]   QIAN J F (钱俊峰), WEI M J (韦梅峻), SUN Z H (孙中华), et al.   compounds (VOCs)[J]. Materials Chemistry and Physics, 2016,
                 Modification of Ru/γ-Al 2O 3 and its catalytic hydrogenation of   177(1): 570-576.
                 diisoonyl phthalate[J]. Fine Chemicals (精细化工), 2021, 38(8):   [27]  TAKAHASHI M, KOIZUMI H, CHUN W J, et al. Finely controlled
                 1604-1612.                                        multimetallic nanocluster catalysts for solvent-free aerobic oxidation
            [9]   DONG T, LIU W M, MA M D, et al. Hierarchical zeolite enveloping   of hydrocarbons[J]. Science Advances, 2017, 3(7): e1700101.
                 Pd-CeO 2 nanowires: An efficient adsorption/catalysis bifunctional   [28]  DAS E, GURSEL S A, YURTCAN A B. Pt-alloy decorated graphene
                 catalyst for low temperature propane total degradation[J]. Chemical   as an  efficient electrocatalyst for PEM fuel cell reactions[J].  The
                 Engineering Journal, 2020, 393(1): 124717.        Journal of Supercritical Fluids, 2020, 165(1): 104962.
            [10]  MA M D, YANG  R,  HE  C,  et al. Pd-based catalysts promoted by   [29]  WANG Z  W, DENG J G, LIU Y  X,  et al. Three-dimensionally
                 hierarchical porous Al 2O 3 and ZnO microsphere supports/coatings for   ordered macroporous CoCr 2O 4-supported Au-Pd alloy nanoparticles:
                 ethyl acetate highly active and stable destruction[J]. Journal of   Highly active catalysts for methane combustion[J]. Catalysis Today,
                 Hazardous Materials, 2021, 401(5): 123281.        2017, 281(1): 467-476.
            [11]  ZOU  X L, CHEN  J F, RUI Z B,  et al. Sequential growth reveals   [30]  WANG Y H (王燕辉). Study on Ru/C catalyst for hydrogenation of
                 multi-spinel interface promotion for methane combustion over   butanone prepared by supercritical  fluid deposition process[D].
                 alumina supported palladium catalyst[J]. Applied Catalysis B:   Tianjin: Tianjin University (天津大学), 2012.
                 Environmental, 2020, 273(15): 119071.         [31]  ROY P S, SONG J, KIM K, et al. Effects of CeZrO 2-Al 2O 3 support
            [12]  ZOU X L, RUI Z B, SONG S Q, et al. Enhanced methane combustion   composition of metal-foam-coated Pd-Rh catalysts for the steam-
                 performance over  NiAl 2O 4-interface-promoted Pd/γ-Al 2O 3[J]. Journal   biogas reforming reaction[J]. Journal of Industrial and Engineering
                 of Catalysis, 2016, 338: 192-201.                 Chemistry, 2018, 62(25): 120-129.
            [13]  BORETSKAYA A, IL'YASOV I, POPOV A, et al. Modification of a   [32]  WATKINS J J, MCCARTHY T J. Polymer/metal nanocomposite
                 phase-inhomogeneous alumina support of a palladium catalyst. Part   synthesis in supercritical CO 2[J]. Chemistry of Materials, 1995, 7(11):
                 Ⅱ : The effect of palladium dispersion on the formation of hydride   1991-1994.
                 forms, electronic state, and catalytic performance in the reaction of   [33]  GUNES H, YILDIZ D Ş, ÖZENER B, et al. Preparation of Pt/Al 2O 3
                 partial hydrogenation of  unsaturated hydrocarbons[J]. Materials   and PtPd/Al 2O 3 catalysts by supercritical deposition  and their
                 Today Chemistry, 2021, 19: 100387.                performance for oxidation of nitric oxide and propene[J]. Catalysis
            [14]  ZHANG Y J, ZHOU J C, LI K, et al. Synergistic catalysis of hybrid   Today, 2022, 388/389(1): 70-78.
                 nano-structure Pd catalyst for highly efficient catalytic selective   [34]  JIANG R C, ZHANG  Y, SWIER S,  et al. Preparation  via
                 hydrogenation  of  benzaldehyde[J]. Catalysis Today, 2020, 358(1):   supercritical fluid route of Pd-impregnated nafion membranes which
                 129-137.                                          exhibit reduced methanol crossover for DMFC[J]. Electrochemical
            [15]  LIN J, ZHAO  L S, ZHENG  Y,  et al. Facile strategy to extend   and Solid-State Letters, 2005, 8(11): 611-615.
                 stability of simple component-alumina-supported palladium catalysts         (下转第 1154 页)
   69   70   71   72   73   74   75   76   77   78   79