Page 74 - 《精细化工》2022年第6期
P. 74
·1140· 精细化工 FINE CHEMICALS 第 39 卷
是一种良好的助溶剂;沉积温度或沉积压力的改变 for efficient methane combustion[J]. ACS Applied Materials &
Interfaces, 2020, 12(50): 56095-56107.
均会对 Pd-Cu 纳米粒子的粒径产生影响;在 2 g 氧 [16] DU J C, LI H, WANG C X, et al. Improved catalytic activity over
化铝球、Pd 理论负载量 0.5%、Cu/Pd 理论物质的量 P-doped ceria-zirconia-alumina supported palladium catalysts for methane
oxidation[J]. Catalysis Communications, 2020, 141(15): 106012.
比为 1∶1,沉积时间 3.0 h、沉积温度 65 ℃、沉积 [17] WANG Y X, HUANG H J, BAXTER N C, et al. Guaiacol
压力 15 MPa、8 mL 二氯甲烷的工艺条件下,能获得 hydrodeoxygenation over Pd catalyst with mesoporous ZSM-5
support synthesized by solid-state crystallization[J]. Catalysis Today,
平均粒径较小(1.81 nm)的 Pd-Cu 纳米粒子。关于 2020, 358(1): 60-67.
[18] YANG X Q, MA X Y, HAN D W, et al. Efficient removal of toluene
Pd(acac) 2 与Cu(acac) 2 在氧化铝表面的竞争吸附有待于
over palladium supported on hierarchical alumina microspheres
后续理论分析与实验研究。 catalyst[J]. Catalysis Today, 2020, 375(1): 352-359.
[19] ERCOLINO G, KARIMI S, STELMACHOWSKI P, et al. Catalytic
参考文献: combustion of residual methane on alumina monoliths and open cell
foams coated with Pd/Co 3O 4[J]. Chemical Engineering Journal,
[1] GONSER U. Nano-structured materials[J]. Hyperfine Interactions, 2017, 326(15): 339-349.
1994, 94(1): 2261-2264. [20] DING Y Q, JIA Y Y, JIANG M X, et al. Superior catalytic activity of
[2] HU S F (胡帅飞), PANG Z H (庞志华), TAN W C (谭万春), et al. Pd-based catalysts upon tuning the structure of the ceria-zirconia
Recent progress in research into supported nano-metal material[J]. support for methane combustion[J]. Chemical Engineering Journal,
Environmental Science & Technology (环境科学与技术), 2014, 2021, 416(15): 129150.
37(9): 65-69, 75. [21] YANG L, PAN Z D, WANG S Q, et al. Highly effective
[3] LIU Y X (刘迎新), ZHANG L (张粮), ZHANG K Y (张凯悦), et al. Pd/MgO/γ-Al 2O 3 catalysts for CO oxidative coupling to dimethyl
Synthesis of pyrrolidone compounds via reductive amination of oxalate: The effect of MgO coating on γ-Al 2O 3[J]. ACS Applied
levulinic acid with nitriles over Pd catalysts[J]. Fine Chemicals (精细 Materials & Interfaces, 2021, 13(24): 28064-28071.
化工), 2021, 38(12): 2531-2538. [22] MA Y, ZHANG G K. Sepiolite nanofiber-supported platinum
[4] JU J F (鞠剑锋), WU D H (吴东辉), HUA P (华平), et al. nanoparticle catalysts toward the catalytic oxidation of formaldehyde
Preparation of C-doped porous TiO 2 supported RuAg catalyst for at ambient temperature: Efficient and stable performance and
methanol electro-oxidation[J]. Fine Chemicals (精细化工), 2021, mechanism[J]. Chemical Engineering Journal, 2016, 288(15): 70-78.
38(3): 566-571. [23] GAN T, CHU X F, QI H, et al. Pt/Al 2O 3 with ultralow Pt-loading
[5] CHEN X H, ZHENG Y, HUANG F, et al. Catalytic activity and catalyze toluene oxidation: Promotional synergistic effect of Pt
stability over nanorod-like ordered mesoporous phosphorus-doped nanoparticles and Al 2O 3 support[J]. Applied Catalysis B: Environmental,
alumina supported palladium catalysts for methane[J]. ACS Catalysis, 2019, 257(15): 117943.
2018, 8(12): 11016-11028. [24] ZHANG X, ZHANG M, DENG Y, et al. A stable low-temperature
[6] CHEN X H, ZHENG Y, CHEN Y L, et al. Improved methane H 2-production catalyst by crowding Pt on α-MoC[J]. Nature, 2021,
oxidation activity of P-doped γ-Al 2O 3 supported palladium catalysts 589(7842): 396-401.
by tailoring the oxygen mobility and electronic properties[J]. [25] CHEN L X, STERBINSKY G E, TAIT S L. Synthesis of platinum
International Journal of Hydrogen Energy, 2019, 44(51): 27772-27783. single-site centers through metal-ligand self-assembly on powdered
[7] CALZADA L A, COLLINS S E, HAN C W, et al. Synergetic effect of metal oxide supports[J]. Journal of Catalysis, 2018, 365: 303-312.
bimetallic Au-Ru/TiO 2 catalysts for complete oxidation of methanol[J]. [26] ABOUKAIS A, SKAF M, HANY S, et al. A comparative study of
Applied Catalysis B: Environmental, 2017, 207(15): 79-92. Cu, Ag and Au doped CeO 2 in the total oxidation of volatile organic
[8] QIAN J F (钱俊峰), WEI M J (韦梅峻), SUN Z H (孙中华), et al. compounds (VOCs)[J]. Materials Chemistry and Physics, 2016,
Modification of Ru/γ-Al 2O 3 and its catalytic hydrogenation of 177(1): 570-576.
diisoonyl phthalate[J]. Fine Chemicals (精细化工), 2021, 38(8): [27] TAKAHASHI M, KOIZUMI H, CHUN W J, et al. Finely controlled
1604-1612. multimetallic nanocluster catalysts for solvent-free aerobic oxidation
[9] DONG T, LIU W M, MA M D, et al. Hierarchical zeolite enveloping of hydrocarbons[J]. Science Advances, 2017, 3(7): e1700101.
Pd-CeO 2 nanowires: An efficient adsorption/catalysis bifunctional [28] DAS E, GURSEL S A, YURTCAN A B. Pt-alloy decorated graphene
catalyst for low temperature propane total degradation[J]. Chemical as an efficient electrocatalyst for PEM fuel cell reactions[J]. The
Engineering Journal, 2020, 393(1): 124717. Journal of Supercritical Fluids, 2020, 165(1): 104962.
[10] MA M D, YANG R, HE C, et al. Pd-based catalysts promoted by [29] WANG Z W, DENG J G, LIU Y X, et al. Three-dimensionally
hierarchical porous Al 2O 3 and ZnO microsphere supports/coatings for ordered macroporous CoCr 2O 4-supported Au-Pd alloy nanoparticles:
ethyl acetate highly active and stable destruction[J]. Journal of Highly active catalysts for methane combustion[J]. Catalysis Today,
Hazardous Materials, 2021, 401(5): 123281. 2017, 281(1): 467-476.
[11] ZOU X L, CHEN J F, RUI Z B, et al. Sequential growth reveals [30] WANG Y H (王燕辉). Study on Ru/C catalyst for hydrogenation of
multi-spinel interface promotion for methane combustion over butanone prepared by supercritical fluid deposition process[D].
alumina supported palladium catalyst[J]. Applied Catalysis B: Tianjin: Tianjin University (天津大学), 2012.
Environmental, 2020, 273(15): 119071. [31] ROY P S, SONG J, KIM K, et al. Effects of CeZrO 2-Al 2O 3 support
[12] ZOU X L, RUI Z B, SONG S Q, et al. Enhanced methane combustion composition of metal-foam-coated Pd-Rh catalysts for the steam-
performance over NiAl 2O 4-interface-promoted Pd/γ-Al 2O 3[J]. Journal biogas reforming reaction[J]. Journal of Industrial and Engineering
of Catalysis, 2016, 338: 192-201. Chemistry, 2018, 62(25): 120-129.
[13] BORETSKAYA A, IL'YASOV I, POPOV A, et al. Modification of a [32] WATKINS J J, MCCARTHY T J. Polymer/metal nanocomposite
phase-inhomogeneous alumina support of a palladium catalyst. Part synthesis in supercritical CO 2[J]. Chemistry of Materials, 1995, 7(11):
Ⅱ : The effect of palladium dispersion on the formation of hydride 1991-1994.
forms, electronic state, and catalytic performance in the reaction of [33] GUNES H, YILDIZ D Ş, ÖZENER B, et al. Preparation of Pt/Al 2O 3
partial hydrogenation of unsaturated hydrocarbons[J]. Materials and PtPd/Al 2O 3 catalysts by supercritical deposition and their
Today Chemistry, 2021, 19: 100387. performance for oxidation of nitric oxide and propene[J]. Catalysis
[14] ZHANG Y J, ZHOU J C, LI K, et al. Synergistic catalysis of hybrid Today, 2022, 388/389(1): 70-78.
nano-structure Pd catalyst for highly efficient catalytic selective [34] JIANG R C, ZHANG Y, SWIER S, et al. Preparation via
hydrogenation of benzaldehyde[J]. Catalysis Today, 2020, 358(1): supercritical fluid route of Pd-impregnated nafion membranes which
129-137. exhibit reduced methanol crossover for DMFC[J]. Electrochemical
[15] LIN J, ZHAO L S, ZHENG Y, et al. Facile strategy to extend and Solid-State Letters, 2005, 8(11): 611-615.
stability of simple component-alumina-supported palladium catalysts (下转第 1154 页)