Page 156 - 《精细化工》2022年第7期
P. 156
·1442· 精细化工 FINE CHEMICALS 第 39 卷
毒性实验中,空白胶束的生物相容性良好;在粒径 [12] WASSEL E, WESNER D, SCHÖNHERR H. Colloidal force probe
study of poly[di(ethylene glycol) methylether methacrylate]
测试中,胶束的粒径载药前后发生明显变化,且通
homopolymer brush layers in aqueous media at different temperatures[J].
过荧光共聚焦显微镜测试辅助证明,DOX/HCl 成功 European Polymer Journal, 2017, 89: 440-448.
包裹于该聚合物胶束的内核中,聚合物胶束具有作 [13] SZWEDA D, SZWEDA R, DWORAK A, et al. Thermoresponsive
poly[oligo (ethylene glycol) methacrylate]s and their bioconjugates-
为纳米药物载体的潜力应用于生物医学中。选用 Synthesis and solution behavior[J]. Polimery, 2017, 62(4): 298-310.
DOX/HCl 为模型药物,在体外释放实验中,聚合物 [14] WANG Y, THIES-WEESIE D M, BOSMAN E D, et al. Tuning the
size of all-HPMA polymeric micelles fabricated by solvent extraction[J].
P(PFPHM 9-b-DMAA-b-PEGMA 360)的包裹效果良好,
Journal of Controlled Release, 2022, 343: 338-346.
其载药量和包封率可达 20.6%和 86.6%,在 42 和 37 [15] XU N, HUANG X B, YIN G F, et al. Thermosensitive star polymer
℃下在 72 h 释药率分别为 91.9%和 35.4%,说明 pompons with a core-arm structure as thermo-responsive controlled
release drug carriers[J]. RSC Advances, 2018, 8(28): 15604-15612.
P(PFPHM 9-b-DMAA-b-PEGMA 360)具有温度敏感性。 [16] FRIESEN C M, AMEDURI B. Radical copolymerization of vinylidene
该文为设计高效的功能性刺激响应纳米载体提供一 fluoride (VDF) with oligo (hexafluoropropylene oxide)perfluorovinyl
种潜在有效简便的方法。 ether macromonomer to obtain PVDF-g-oligo (HFPO) graft
copolymers[J]. Macromolecules, 2015, 48(19): 7060-7070.
[17] GELIN M P, AMEDURI B. Synthesis of an original poly(vinylidene
参考文献:
fluoride-co-hexafluoropropylene)-g-perfluoropolyether graft copolymer[J].
[1] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2019[J]. Journal of Fluorine Chemistry, 2003, 119(1): 53-58.
CA: A Cancer Journal for Clinicians, 2019, 69(1): 7-34. [18] FERREIRA L, VIDAL M M, GIL M H. Evaluation of poly(2-
[2] POURMOAZZEN Z, BAGHERI M, ENTEZAMI A A, et al. pH- hydroxyethyl methacrylate) gels as drug delivery systems at different
responsive micelles composed of poly(ethylene glycol) and cholesterol- pH values[J]. International Journal of Pharmaceutics, 2000, 194(2):
modified poly(monomethyl itaconate) as a nanocarrier for controlled 169-180.
and targeted release of piroxicam[J]. Journal of Polymer Research, [19] TAKEMOTO Y, AJIRO H, AKASHI M. Hydrogen-bonded multilayer
2013, 20(12): 1-12. films based on poly(N-vinylamide) derivatives and tannic acid[J].
[3] CHEN Q, ZHENG J W, YUAN X Z, et al. Folic acid grafted and Langmuir, 2015, 31(24): 6863-6869.
tertiary amino based pH-responsive pentablock polymeric micelles [20] SAVIN C L, POPA M, DELAITE C, et al. Chitosan grafted-poly
for targeting anticancer drug delivery[J]. Materials Science & (ethylene glycol) methacrylate nanoparticles as carrier for controlled
Engineering C-Materials for Biological Applications, 2018, 82: 1-9. release of bevacizumab[J]. Materials Science & Engineering
[4] XU X Y, ZHANG X F, WANG X H, et al. Comparative study of C-Materials for Biological Applications, 2019, 98: 843-860.
paclitaxel physically encapsulated in and chemically conjugated with [21] DING D R (丁德润), SI X W (司晓伟), YAO Y H (姚有红).
PEG-PLA[J]. Polymers for Advanced Technologies, 2009, 20(11): Characterization and drug delivery behavior of quaternary amphiphilic
843-848. chitosan derivatives[J]. Fine Chemicals (精细化工), 2012, 29(6):
[5] DOMIŃSKI A, KRAWCZYK M, KONIECZNY T, et al. Biodegradable 549-553.
pH-responsive micelles loaded with 8-hydroxyquinoline glycoconjugates [22] DURAN A, SOYLAK M, TUNCEL S A. Poly(vinyl pyridine-poly
for Warburg effect based tumor targeting[J]. European Journal of ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads
Pharmaceutics and Biopharmaceutics, 2020, 154: 317-329. for heavy metal removal[J]. Journal of Hazardous Materials, 2008,
[6] MAYSINGER D, LOVRIĆ J, EISENBERG A, et al. Fate of micelles 155(1/2): 114-120.
and quantum dots in cells[J]. European Journal of Pharmaceutics and [23] DAI M Y (代明允), TIAN Y (田野), LIU Y (刘鹰), et al. Preparation
Biopharmaceutics, 2007, 65(3): 270-281. and temperature responsive properties of 2-hydroxy-3-allyloxypropyl
[7] LI B (李彬), XIA Y (夏瑶), AN H L (安洪利), et al. Research progress hydroxyethyl celluloses[J]. Fine Chemicals (精细化工), 2019, 36(4):
in the design, synthesis and applicationproperties of fluorine-containing 595-601, 608.
polyimides[J]. Fine Chemicals (精细化工), 2021, 38(7): 1314-1324. [24] SONG X T, YUAN K, LI H Y, et al. Dual pseudo and chemical
[8] ZHU J X (朱建新), YANG J J (杨建军), WU Q Y (吴庆云), et al. crosslinked polymer micelles for effective paclitaxel delivery and
Preparation and properties of silicone-containing waterbornepolyurethane release[J]. ACS Applied Bio Materials, 2020, 3(4): 2455-2465.
grafted with organic fluorine[J]. Fine Chemicals (精细化工), 2021, [25] THAMBI T, DEEPAGAN V, YOO C K, et al. Synthesis and
38(3): 512-517. physicochemical characterization of amphiphilic block copolymers
[9] JEE J P, MCCOY A, MECOZZI S. Encapsulation and release of bearing acid-sensitive orthoester linkage as the drug carrier[J]. Polymer,
amphotericin B from an ABC triblock fluorous copolymer[J].
Pharmaceutical Research, 2012, 29(1): 69-82. 2011, 52(21): 4753-4759.
[10] CHILKOTI A, DREHER M R, MEYER D E, et al. Targeted drug [26] GUYOMARC’H F, LAW A J, DALGLEISH D G. Formation of
delivery by thermally responsive polymers[J]. Advanced Drug Delivery soluble and micelle-bound protein aggregates in heated milk[J].
Reviews, 2002, 54(5): 613-630. Journal of Agricultural and Food Chemistry, 2003, 51(16): 4652-4660.
[11] HU Y, DARCOS V, MONGE S, et al. Thermo-responsive drug release [27] ZHANG Z L (张子路), XU L (徐亮), ZANG C Y (臧春雨), et al.
from self-assembled micelles of brush-like PLA/PEG analogues Precise synthesis and thermoresponsive property of block copolymers
block copolymers[J]. International Journal of Pharmaceutics, 2015, consisting of N,N-diethylacrylamide and N,N-dimethylacrylamide
491(1/2): 152-161. [J]. Acta Polymerica Sinica (高分子学报), 2019, 50(4): 384-392.