Page 91 - 《精细化工)》2023年第10期
P. 91

第 10 期                    韩   捷,等:  镍基催化剂调控的炔烃选择性加氢研究进展                                 ·2169·


            要在未来的研究工作中加以改善。                                        dispersed nickel nanoclusters confined in MgAl mixed metal oxide
                                                                   platelets for benzoic acid hydrogenation[J]. Journal  of  Catalysis,
                (1)原子利用率低。Ni 基单原子催化剂虽在炔                            2019, 372: 258-265.
            烃选择性反应中已有报道,但是数量较少,应进一                             [10]  LUO Q,  WANG Z,  CHEN Y Z,  et al. Dynamic  modification of
                                                                   palladium catalysts with chain alkylamines for the selective
            步构建配位环境可调的 Ni 基单原子催化剂,对活性                              hydrogenation of alkynes[J]. ACS Applied Materials & Interfaces,
            位点进行电子修饰,活化反应物,保障目标烯烃选                                 2021, 13(27): 31775-31784.
                                                               [11]  WANG Z S, GARG A, WANG L X, et al. Enhancement of alkyne
            择性的同时,提高 Ni 金属的利用率;                                    semi-hydrogenation selectivity by electronic modification  of
                (2)通过制备合金或金属间化合物提高化学选                              platinum[J]. ACS Catalysis, 2020, 10(12): 6763-6770.
                                                               [12]  ZHANG Y  Y, DIAO W J, MONNIER J R,  et al. Pd-Ag/SiO 2
            择性,往往会伴随活性位点的掩盖或/和损失,即活                                bimetallic catalysts prepared by galvanic displacement for selective
            性的损失。因此,探讨 Ni 基单原子合金的制备,充                              hydrogenation of acetylene in excess ethylene[J]. Catalysis Science
                                                                   & Technology, 2015, 5(8): 4123-4132.
            分发挥 Ni 与第 2 种金属的协同作用,使 H 2 活化和                     [13]  REINA A, FAVIER I, PRADEL C,  et al. Stable zero-valent nickel
            加氢反应发生在催化剂的不同的位置,在获得高选                                 nanoparticles in  glycerol: Synthesis and applications in selective
                                                                   hydrogenations[J]. Advanced Synthesis & Catalysis, 2018, 360(18):
            择性的同时不损失催化剂活性;                                         3544-3552.
                (3)Ni 基催化剂的寿命有待进一步检验和提                         [14]  WEN X, SHI  X  Z, QIAO X L, et al. Ligand-free nickel-catalyzed
                                                                   semihydrogenation  of alkynes with sodium borohydride: A highly
            高。工业生产所用的催化剂往往要经受以月为时间                                 efficient and selective process for  cis-alkenes under ambient
            单位的稳定性考验,但 Ni 基催化剂稳定性研究鲜有                              conditions[J]. Chemical Communications, 2017, 53(39): 5372-5375.
                                                               [15]  CHAI  Y  C,  WU G J, LIU X Y,  et al. Acetylene-selective
            报道,已报道的研究结果则表明,Ni 基催化剂的有                               hydrogenation catalyzed by  cationic nickel confined in zeolite[J].
                                                                   Journal  of  the  American Chemical Society, 2019, 141(25):
            效使用时间普遍较短。因此,在制备高活性 Ni 基催
                                                                   9920-9927.
            化剂的同时,研究载体/稳定剂与金属的强相互作                             [16]  DENG X,  BAI R H, CHAI  Y C,  et al. Homogeneous-like alkyne
                                                                   selective hydrogenation catalyzed by cationic nickel confined in
            用,以提高催化剂稳定性,是具有重要实际意义的                                 zeolite[J]. CCS Chemistry, 2022, 4(3): 949-962.
            方向之一;                                              [17]  FU B A, MCCUE A J, LIU Y N, et al. Highly selective and stable
                                                                   isolated non-noble metal atom catalysts for selective hydrogenation
                (4)当前虽已能够得到高分散甚至单分散的 Ni                            of acetylene[J]. ACS Catalysis, 2021, 12(1): 607-615.
            基催化剂,但常伴随昂贵的有机镍化合物、有毒配                             [18]  TESCHNER D, BORSODI J, WOOTSCH A,  et al. The roles of
                                                                   subsurface carbon and hydrogen in palladium-catalyzed alkyne
            体等的使用,以及繁琐和高能耗的制备过程。因此,                                hydrogenation[J]. Science, 2008, 320(5872): 86-89.
            有必要开发更为绿色、高效的催化剂制备工艺,以                             [19]  LI M S, SHEN J  Y. Microcalorimetric studies of O 2 and  C 2H 4
                                                                   adsorption on Pd/SiO 2 catalysts modified  by Cu and Ag[J].
            满足特定结构催化剂的制备。                                          Thermochimica Acta, 2001, 379(1/2): 45-50.
                                                               [20]  ZHANG L L, ZHOU M X, WANG A Q, et al. Selective hydrogenation
            参考文献:                                                  over supported metal catalysts: From nanoparticles to single atoms[J].
                                                                   Chemical Reviews, 2019, 120(2): 683-733.
            [1]   LIN R H, ALBANI D, FAKO E, et al. Design of single gold atoms   [21]  NIU W X, GAO Y J, ZHANG W Q, et al. Pd-Pb alloy nanocrystals
                 on  nitrogen-doped carbon  for molecular recognition  in alkyne   with tailored composition for semihydrogenation: Taking advantage
                 semi-hydrogenation[J]. Angewandte Chemie International Edition,   of catalyst poisoning[J]. Angewandte Chemie, 2015, 127(28): 8389-
                 2019, 58(2): 504-509.                             8392.
            [2]   ZHANG Y G, WEN X, SHI Y Q, et al. Sulfur-containing polymer as   [22]  PEI G X, LIU X Y, YANG X F, et al. Performance of Cu-alloyed Pd
                 a platform for  synthesis of size-controlled Pd nanoparticles for   single-atom catalyst for semihydrogenation of acetylene under
                 selective semihydrogenation of alkynes[J]. Industrial & Engineering   simulated front-end conditions[J]. ACS Catalysis, 2017, 7(2): 1491-
                 Chemistry Research, 2018, 58(3): 1142-1149.       1500.
            [3]   TORRES GALVIS H M, DE JONG K P. Catalysts for production of   [23]  FENG Y X, ZHOU L S, WAN Q, et al. Selective hydrogenation of
                 lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013,   1,3-butadiene catalyzed by a single Pd atom anchored on graphene:
                 3(9): 2130-2149.                                  The importance of dynamics[J].  Chemical Science, 2018, 9(27):
            [4]   RAVANCHI M  T, SAHEBDELFAR S, KOMEILI S. Acetylene   5890-5896.
                 selective hydrogenation: A technical review on catalytic  aspects[J].   [24]  DAI X Y, CHEN  Z,  YAO  T,  et al.  Single Ni sites distributed on
                 Reviews in Chemical Engineering, 2018, 34(2): 215-237.   N-doped carbon  for selective hydrogenation  of acetylene[J].
            [5]   OGER C, BALAS L,  DURAND  T,  et al.  Are alkyne reductions   Chemical Communications, 2017, 53(84): 11568-11571.
                 chemo-, regio-, and stereoselective enough to provide  pure (Z)-   [25]  JIAN M  Z,  LIU J X, LI  W X. Hydroxyl improving the  activity,
                 olefins in polyfunctionalized bioactive  molecules?[J]. Chemical   selectivity and stability of supported Ni single atoms for selective
                 Reviews, 2013, 113(3): 1313-1350.                 semi-hydrogenation[J]. Chemical Science, 2021, 12(30): 10290-
            [6]   AUGUSTYNIAK  A W, TRZECIAK A M. Pd-nanocomposites   10298.
                 formed by calcination of [Pd(2-pymo) 2] n framework as catalysts of   [26]  PRINZ J, PIGNEDOLI C A, STÖCKL Q S,  et al. Adsorption of
                 phenylacetylene semihydrogenation in water[J]. ChemCatChem,   small hydrocarbons on the three-fold  PdGa surfaces: The road to
                 2021, 13(9): 2145-2151.                           selective hydrogenation[J]. Journal of the American Chemical Society,
            [7]   DONG J,  WEN X, ZHU  T L,  et al. Hierarchically  nanostructured   2014, 136(33): 11792-11798.
                 bimetallic NiCo/Mg xNi yO catalyst with enhanced activity for phenol   [27]  STUDT F, ABILD P F, BLIGAARD T,  et al. Identification of
                 hydrogenation[J]. Molecular Catalysis, 2020, 485: 110846-110852.   non-precious metal alloy catalysts for selective hydrogenation of
            [8]   QIAO X  L, SHE  T T, ZHANG H L,  et al. One-pot synthesis of   acetylene[J]. Science, 2008, 320(5881): 1320-1322.
                 porous silica-supported ultrafine Ni nanoparticles as efficient and   [28]  SPANJERS C S, HELD J  T, JONES  M J,  et al. Zinc inclusion to
                 stable catalyst for selective hydrogenation of benzophenone[J].   heterogeneous nickel catalysts reduces oligomerization  during the
                 Applied Catalysis B: Environmental, 2019, 259: 118111-118120.   semi-hydrogenation of acetylene[J]. Journal of Catalysis, 2014, 316:
            [9]   ZHANG H L, DONG J, QIAO X L, et al. In-situ generated highly
                                                                   164-173.
   86   87   88   89   90   91   92   93   94   95   96