Page 91 - 《精细化工)》2023年第10期
P. 91
第 10 期 韩 捷,等: 镍基催化剂调控的炔烃选择性加氢研究进展 ·2169·
要在未来的研究工作中加以改善。 dispersed nickel nanoclusters confined in MgAl mixed metal oxide
platelets for benzoic acid hydrogenation[J]. Journal of Catalysis,
(1)原子利用率低。Ni 基单原子催化剂虽在炔 2019, 372: 258-265.
烃选择性反应中已有报道,但是数量较少,应进一 [10] LUO Q, WANG Z, CHEN Y Z, et al. Dynamic modification of
palladium catalysts with chain alkylamines for the selective
步构建配位环境可调的 Ni 基单原子催化剂,对活性 hydrogenation of alkynes[J]. ACS Applied Materials & Interfaces,
位点进行电子修饰,活化反应物,保障目标烯烃选 2021, 13(27): 31775-31784.
[11] WANG Z S, GARG A, WANG L X, et al. Enhancement of alkyne
择性的同时,提高 Ni 金属的利用率; semi-hydrogenation selectivity by electronic modification of
(2)通过制备合金或金属间化合物提高化学选 platinum[J]. ACS Catalysis, 2020, 10(12): 6763-6770.
[12] ZHANG Y Y, DIAO W J, MONNIER J R, et al. Pd-Ag/SiO 2
择性,往往会伴随活性位点的掩盖或/和损失,即活 bimetallic catalysts prepared by galvanic displacement for selective
性的损失。因此,探讨 Ni 基单原子合金的制备,充 hydrogenation of acetylene in excess ethylene[J]. Catalysis Science
& Technology, 2015, 5(8): 4123-4132.
分发挥 Ni 与第 2 种金属的协同作用,使 H 2 活化和 [13] REINA A, FAVIER I, PRADEL C, et al. Stable zero-valent nickel
加氢反应发生在催化剂的不同的位置,在获得高选 nanoparticles in glycerol: Synthesis and applications in selective
hydrogenations[J]. Advanced Synthesis & Catalysis, 2018, 360(18):
择性的同时不损失催化剂活性; 3544-3552.
(3)Ni 基催化剂的寿命有待进一步检验和提 [14] WEN X, SHI X Z, QIAO X L, et al. Ligand-free nickel-catalyzed
semihydrogenation of alkynes with sodium borohydride: A highly
高。工业生产所用的催化剂往往要经受以月为时间 efficient and selective process for cis-alkenes under ambient
单位的稳定性考验,但 Ni 基催化剂稳定性研究鲜有 conditions[J]. Chemical Communications, 2017, 53(39): 5372-5375.
[15] CHAI Y C, WU G J, LIU X Y, et al. Acetylene-selective
报道,已报道的研究结果则表明,Ni 基催化剂的有 hydrogenation catalyzed by cationic nickel confined in zeolite[J].
Journal of the American Chemical Society, 2019, 141(25):
效使用时间普遍较短。因此,在制备高活性 Ni 基催
9920-9927.
化剂的同时,研究载体/稳定剂与金属的强相互作 [16] DENG X, BAI R H, CHAI Y C, et al. Homogeneous-like alkyne
selective hydrogenation catalyzed by cationic nickel confined in
用,以提高催化剂稳定性,是具有重要实际意义的 zeolite[J]. CCS Chemistry, 2022, 4(3): 949-962.
方向之一; [17] FU B A, MCCUE A J, LIU Y N, et al. Highly selective and stable
isolated non-noble metal atom catalysts for selective hydrogenation
(4)当前虽已能够得到高分散甚至单分散的 Ni of acetylene[J]. ACS Catalysis, 2021, 12(1): 607-615.
基催化剂,但常伴随昂贵的有机镍化合物、有毒配 [18] TESCHNER D, BORSODI J, WOOTSCH A, et al. The roles of
subsurface carbon and hydrogen in palladium-catalyzed alkyne
体等的使用,以及繁琐和高能耗的制备过程。因此, hydrogenation[J]. Science, 2008, 320(5872): 86-89.
有必要开发更为绿色、高效的催化剂制备工艺,以 [19] LI M S, SHEN J Y. Microcalorimetric studies of O 2 and C 2H 4
adsorption on Pd/SiO 2 catalysts modified by Cu and Ag[J].
满足特定结构催化剂的制备。 Thermochimica Acta, 2001, 379(1/2): 45-50.
[20] ZHANG L L, ZHOU M X, WANG A Q, et al. Selective hydrogenation
参考文献: over supported metal catalysts: From nanoparticles to single atoms[J].
Chemical Reviews, 2019, 120(2): 683-733.
[1] LIN R H, ALBANI D, FAKO E, et al. Design of single gold atoms [21] NIU W X, GAO Y J, ZHANG W Q, et al. Pd-Pb alloy nanocrystals
on nitrogen-doped carbon for molecular recognition in alkyne with tailored composition for semihydrogenation: Taking advantage
semi-hydrogenation[J]. Angewandte Chemie International Edition, of catalyst poisoning[J]. Angewandte Chemie, 2015, 127(28): 8389-
2019, 58(2): 504-509. 8392.
[2] ZHANG Y G, WEN X, SHI Y Q, et al. Sulfur-containing polymer as [22] PEI G X, LIU X Y, YANG X F, et al. Performance of Cu-alloyed Pd
a platform for synthesis of size-controlled Pd nanoparticles for single-atom catalyst for semihydrogenation of acetylene under
selective semihydrogenation of alkynes[J]. Industrial & Engineering simulated front-end conditions[J]. ACS Catalysis, 2017, 7(2): 1491-
Chemistry Research, 2018, 58(3): 1142-1149. 1500.
[3] TORRES GALVIS H M, DE JONG K P. Catalysts for production of [23] FENG Y X, ZHOU L S, WAN Q, et al. Selective hydrogenation of
lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013, 1,3-butadiene catalyzed by a single Pd atom anchored on graphene:
3(9): 2130-2149. The importance of dynamics[J]. Chemical Science, 2018, 9(27):
[4] RAVANCHI M T, SAHEBDELFAR S, KOMEILI S. Acetylene 5890-5896.
selective hydrogenation: A technical review on catalytic aspects[J]. [24] DAI X Y, CHEN Z, YAO T, et al. Single Ni sites distributed on
Reviews in Chemical Engineering, 2018, 34(2): 215-237. N-doped carbon for selective hydrogenation of acetylene[J].
[5] OGER C, BALAS L, DURAND T, et al. Are alkyne reductions Chemical Communications, 2017, 53(84): 11568-11571.
chemo-, regio-, and stereoselective enough to provide pure (Z)- [25] JIAN M Z, LIU J X, LI W X. Hydroxyl improving the activity,
olefins in polyfunctionalized bioactive molecules?[J]. Chemical selectivity and stability of supported Ni single atoms for selective
Reviews, 2013, 113(3): 1313-1350. semi-hydrogenation[J]. Chemical Science, 2021, 12(30): 10290-
[6] AUGUSTYNIAK A W, TRZECIAK A M. Pd-nanocomposites 10298.
formed by calcination of [Pd(2-pymo) 2] n framework as catalysts of [26] PRINZ J, PIGNEDOLI C A, STÖCKL Q S, et al. Adsorption of
phenylacetylene semihydrogenation in water[J]. ChemCatChem, small hydrocarbons on the three-fold PdGa surfaces: The road to
2021, 13(9): 2145-2151. selective hydrogenation[J]. Journal of the American Chemical Society,
[7] DONG J, WEN X, ZHU T L, et al. Hierarchically nanostructured 2014, 136(33): 11792-11798.
bimetallic NiCo/Mg xNi yO catalyst with enhanced activity for phenol [27] STUDT F, ABILD P F, BLIGAARD T, et al. Identification of
hydrogenation[J]. Molecular Catalysis, 2020, 485: 110846-110852. non-precious metal alloy catalysts for selective hydrogenation of
[8] QIAO X L, SHE T T, ZHANG H L, et al. One-pot synthesis of acetylene[J]. Science, 2008, 320(5881): 1320-1322.
porous silica-supported ultrafine Ni nanoparticles as efficient and [28] SPANJERS C S, HELD J T, JONES M J, et al. Zinc inclusion to
stable catalyst for selective hydrogenation of benzophenone[J]. heterogeneous nickel catalysts reduces oligomerization during the
Applied Catalysis B: Environmental, 2019, 259: 118111-118120. semi-hydrogenation of acetylene[J]. Journal of Catalysis, 2014, 316:
[9] ZHANG H L, DONG J, QIAO X L, et al. In-situ generated highly
164-173.