Page 92 - 《精细化工)》2023年第10期
P. 92
·2170· 精细化工 FINE CHEMICALS 第 40 卷
[29] YANG L, YU S Y, PENG C, et al. Semihydrogenation of supported Ni-In bimetallic catalysts: Promotional effect of In[J].
phenylacetylene over nonprecious Ni-based catalysts supported on Applied Surface Science, 2016, 387: 16-27.
AlSBA-15[J]. Journal of Catalysis, 2019, 370: 310-320. [50] ZHANG L Y, DING Y X, WU K H, et al. Pd@C core-shell
[30] BAO Z C, YANG L, CHENG Z M, et al. Selective hydrogenation of nanoparticles on carbon nanotubes as highly stable and selective
the C 8 aromatic fraction of pyrolysis gasoline over NiZn 3/α-Al 2O 3: catalysts for hydrogenation of acetylene to ethylene[J]. Nanoscale,
Experimental and modeling studies[J]. Industrial & Engineering 2017, 9(38): 14317-14321.
Chemistry Research, 2020, 59(10): 4322-4332. [51] BAI G Y, SHI L J, ZHAO Z, et al. Preparation of a novel
[31] SIMANULLANG W F, MA J M, SHIMIZU K, et al. Fe 3O 4@SiO 2@Ni-La-B magnetic core-shell nanocomposite for
Silica-decorated Ni-Zn alloy as a highly active and selective catalyst catalytic hydrogenation[J]. Materials Letters, 2013, 96: 93-96.
for acetylene semihydrogenation[J]. Catalysis Science & Technology, [52] BAI G Y, ZHAO Z, NIU L B, et al. Effect of polymers and alkaline
2021, 11(12): 4016-4020. earth metals on the catalytic performance of Ni-B amorphous alloy in
[32] LI C M, CHEN Y D, ZHANG S T, et al. Nickel-gallium intermetallic benzophenone hydrogenation[J]. Catalysis Communications, 2012,
nanocrystal catalysts in the semihydrogenation of phenylacetylene[J]. 23: 34-38.
ChemCatChem, 2014, 6(3): 824-831. [53] BAI G Y, NIU L B, ZHAO Z, et al. Ni-La-B amorphous alloys
[33] WANG L, LI F X, CHEN Y J, et al. Selective hydrogenation of supported on SiO 2 and γ-Al 2O 3 for selective hydrogenation of
acetylene on SiO 2-supported Ni-Ga alloy and intermetallic benzophenone[J]. Journal of Molecular Catalysis A: Chemical, 2012,
compound[J]. Journal of Energy Chemistry, 2019, 29: 40-49. 363: 411-416.
[34] CAO Y Q, ZHANG H, JI S F, et al. Adsorption site regulation to [54] TESCHNER D, REVAY Z, BORSODI J, et al. Understanding
guide atomic design of Ni-Ga catalysts for acetylene semi- palladium hydrogenation catalysts: When the nature of the reactive
hydrogenation[J]. Angewandte Chemie International Edition, 2020, molecule controls the nature of the catalyst active phase[J].
132(28): 11744-11749. Angewandte Chemie International Edition, 2008, 120(48): 9414-
[35] LIU Y X, LIU X, FENG Q C, et al. Intermetallic Ni xM y (M=Ga and 9418.
Sn) nanocrystals: A non-precious metal catalyst for semi-hydrogenation [55] NIU Y M, HUANG X, WANG Y Z, et al. Manipulating interstitial
of alkynes[J]. Advanced Materials, 2016, 28(23): 4747-4754. carbon atoms in the nickel octahedral site for highly efficient
[36] SCHÜTTE K, DODDI A, KROLL C, et al. Colloidal nickel/gallium hydrogenation of alkyne[J]. Nature Communications, 2020, 11(1):
nanoalloys obtained from organometallic precursors in conventional 1-9.
organic solvents and in ionic liquids: Noble-metal-free alkyne [56] GE X H, REN Z H, CAO Y Q, et al. Enhanced acetylene semi-
semihydrogenation catalysts[J]. Nanoscale, 2014, 6(10): 5532-5544. hydrogenation on a subsurface carbon tailored Ni-Ga intermetallic
[37] RAI R K, AWASTHI M K, SINGH V K, et al. Aqueous phase catalyst[J]. Journal of Materials Chemistry A, 2022, 10(37): 19722-
semihydrogenation of alkynes over Ni-Fe bimetallic catalysts[J]. 19731.
Catalysis Science & Technology, 2020, 10(15): 4968-4980. [57] BAKURU V R, FAZL-UR-RAHMAN K, PERIYASAMY G, et al.
[38] SHI X X, LIN Y, HUANG L, et al. Copper catalysts in Unraveling high alkene selectivity at full conversion in alkyne
semihydrogenation of acetylene: From single atoms to nanoparticles[J]. hydrogenation over Ni under continuous flow conditions[J].
ACS Catalysis, 2020, 10(5): 3495-3504. Catalysis Science & Technology, 2022, 12(17): 5265-5273.
[39] ZHOU Y N, SUN W J, CHU W, et al. Adsorption of acetylene on [58] SHI X Z, WEN X, NIE S L, et al. Fabrication of Ni 3N nanorods
ordered Ni xAg 1–x/Ni (111) and effect of Ag-dopant: A DFT study[J]. anchored on N-doped carbon for selective semi-hydrogenation of
Applied Surface Science, 2018, 435: 521-528. alkynes[J]. Journal of Catalysis, 2020, 382: 22-30.
[40] CHAI M Q, LIU X Y, LI L, et al. SiO 2-supported Au-Ni bimetallic [59] CARENCO S, LEYVA-PEREZ A, CONCEPCION P, et al. Nickel
catalyst for the selective hydrogenation of acetylene[J]. Chinese phosphide nanocatalysts for the chemoselective hydrogenation of
Journal of Catalysis, 2017, 38(8): 1338-1346. alkynes[J]. Nano Today, 2012, 7(1): 21-28.
[41] YANG B, BURCH R, HARDACRE C, et al. Origin of the increase [60] CHEN Y D, LI C M, ZHOU J Y, et al. Metal phosphides derived
of activity and selectivity of nickel doped by Au, Ag, and Cu for from hydrotalcite precursors toward the selective hydrogenation of
acetylene hydrogenation[J]. ACS Catalysis, 2012, 2(6): 1027-1032. phenylacetylene[J]. ACS Catalysis, 2015, 5(10): 5756-5765.
[42] LIU H, CHAI M Q, PEI G X, et al. Effect of IB-metal on Ni/SiO 2 [61] CHEN X, LI M, GUAN J C, et al. Nickel-silicon intermetallics with
catalyst for selective hydrogenation of acetylene[J]. Chinese Journal enhanced selectivity in hydrogenation reactions of cinnamaldehyde
of Catalysis, 2020, 41(7): 1099-1108. and phenylacetylene[J]. Industrial & Engineering Chemistry
[43] LIU Y N, ZHAO J Y, FENG J T, et al. Layered double hydroxide- Research, 2012, 51(9): 3604-3611.
derived Ni-Cu nanoalloy catalysts for semi-hydrogenation of [62] YANG K X, CHEN X, GUAN J C, et al. Nickel silicides prepared
alkynes: Improvement of selectivity and anti-coking ability via from organometallic polymer as efficient catalyst towards hydrogenation
alloying of Ni and Cu[J]. Journal of Catalysis, 2018, 359: 251-260. of phenylacetylene[J]. Catalysis Today, 2015, 246: 176-183.
[44] ZHOU S Z, KANG L H, ZHOU X N, et al. Pure acetylene [63] YANG K X, CHEN X, WANG L, et al. SBA-15-supported metal
semihydrogenation over Ni-Cu bimetallic catalysts: Effect of the silicides prepared by chemical vapor deposition as efficient catalysts
Cu/Ni ratio on catalytic performance[J]. Nanomaterials, 2020, 10(3): towards the semihydrogenation of phenylacetylene[J]. ChemCatChem,
509-520. 2017, 9(7): 1337-1342.
[45] GU J, JIAN M Z, HUANG L, et al. Synergizing metal-support [64] POLSHETTIWAR V, BARUWATI B, VARMA R S. Nanoparticle-
interactions and spatial confinement boosts dynamics of atomic supported and magnetically recoverable nickel catalyst: A robust and
nickel for hydrogenations[J]. Nature Nanotechnology, 2021, 16(10): economic hydrogenation and transfer hydrogenation protocol[J].
1141-1149. Green Chemistry, 2009, 11(1): 127-131.
[46] PEI G X, LIU X Y, WANG A Q, et al. Selective hydrogenation of [65] BERNARDOS M D, PEREZ-RODRIGUEZ S, GUAL A, et al.
acetylene in an ethylene-rich stream over silica supported Ag-Ni Facile synthesis of NHC-stabilized Ni nanoparticles and their
bimetallic catalysts[J]. Applied Catalysis A: General, 2017, 545: catalytic application in the Z-selective hydrogenation of alkynes[J].
90-96. Chemical Communications, 2017, 53(56): 7894-7897.
[47] BRUNO J E, DWARICA N S, WHITTAKER T N, et al. Supported [66] DELGADO J A, BENKIRANE O, CLAVER C, et al. Advances in
Ni-Au colloid precursors for active, selective, and stable alkyne the preparation of highly selective nanocatalysts for the semi-
partial hydrogenation catalysts[J]. ACS Catalysis, 2020, 10(4): 2565- hydrogenation of alkynes using colloidal approaches[J]. Dalton
2580. Transactions, 2017, 46(37): 12381-12403.
[48] EGEBERG A, DIETRICH C, KIND C, et al. Bimetallic nickel- [67] KONNERTH H, PRECHTL M H. Selective partial hydrogenation of
iridium and nickel-osmium alloy nanoparticles and their catalytic alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at
performance in hydrogenation reactions[J]. ChemCatChem, 2017, near ambient conditions[J]. Chemical Communications, 2016, 52(58):
9(18): 3534-3543. 9129-9132.
[49] CHEN Y J, CHEN J X. Selective hydrogenation of acetylene on SiO 2 (下转第 2213 页)