Page 92 - 《精细化工)》2023年第10期
P. 92

·2170·                            精细化工   FINE CHEMICALS                                 第 40 卷

            [29]  YANG L, YU S Y, PENG C,  et al. Semihydrogenation of   supported Ni-In bimetallic catalysts:  Promotional effect of  In[J].
                 phenylacetylene over nonprecious Ni-based catalysts supported on   Applied Surface Science, 2016, 387: 16-27.
                 AlSBA-15[J]. Journal of Catalysis, 2019, 370: 310-320.   [50]  ZHANG  L Y, DING  Y X, WU K H,  et al. Pd@C core-shell
            [30]  BAO Z C, YANG L, CHENG Z M, et al. Selective hydrogenation of   nanoparticles on carbon nanotubes as highly stable and selective
                 the C 8 aromatic fraction of pyrolysis gasoline over NiZn 3/α-Al 2O 3:   catalysts for hydrogenation of acetylene to ethylene[J]. Nanoscale,
                 Experimental and  modeling studies[J]. Industrial & Engineering   2017, 9(38): 14317-14321.
                 Chemistry Research, 2020, 59(10): 4322-4332.   [51]  BAI G  Y, SHI L J, ZHAO Z,  et al. Preparation of a novel
            [31]  SIMANULLANG W F, MA J M, SHIMIZU K,  et al.      Fe 3O 4@SiO 2@Ni-La-B  magnetic core-shell  nanocomposite for
                 Silica-decorated Ni-Zn alloy as a highly active and selective catalyst   catalytic hydrogenation[J]. Materials Letters, 2013, 96: 93-96.
                 for acetylene semihydrogenation[J]. Catalysis Science & Technology,   [52]  BAI G Y, ZHAO Z, NIU L B, et al. Effect of polymers and alkaline
                 2021, 11(12): 4016-4020.                          earth metals on the catalytic performance of Ni-B amorphous alloy in
            [32]  LI C M, CHEN Y D, ZHANG S T, et al. Nickel-gallium intermetallic   benzophenone hydrogenation[J]. Catalysis Communications, 2012,
                 nanocrystal catalysts in the semihydrogenation of phenylacetylene[J].   23: 34-38.
                 ChemCatChem, 2014, 6(3): 824-831.             [53]  BAI G  Y, NIU L  B, ZHAO Z,  et al. Ni-La-B amorphous alloys
            [33]  WANG  L,  LI F X, CHEN  Y J,  et al. Selective hydrogenation of   supported on SiO 2 and  γ-Al 2O 3 for selective hydrogenation of
                 acetylene on SiO 2-supported Ni-Ga  alloy and intermetallic   benzophenone[J]. Journal of Molecular Catalysis A: Chemical, 2012,
                 compound[J]. Journal of Energy Chemistry, 2019, 29: 40-49.   363: 411-416.
            [34]  CAO Y Q, ZHANG H, JI S F, et al. Adsorption site regulation to   [54]  TESCHNER D, REVAY Z, BORSODI J,  et al. Understanding
                 guide atomic design of Ni-Ga catalysts for acetylene semi-   palladium hydrogenation catalysts: When the nature of the reactive
                 hydrogenation[J]. Angewandte Chemie International Edition,  2020,   molecule  controls the nature of the catalyst active phase[J].
                 132(28): 11744-11749.                             Angewandte Chemie International Edition, 2008, 120(48): 9414-
            [35]  LIU Y X, LIU X, FENG Q C, et al. Intermetallic Ni xM y (M=Ga and   9418.
                 Sn) nanocrystals: A non-precious metal catalyst for semi-hydrogenation   [55]  NIU Y M, HUANG X, WANG Y Z, et al. Manipulating interstitial
                 of alkynes[J]. Advanced Materials, 2016, 28(23): 4747-4754.   carbon atoms in the nickel octahedral site for highly efficient
            [36]  SCHÜTTE K, DODDI A, KROLL C, et al. Colloidal nickel/gallium   hydrogenation  of alkyne[J]. Nature Communications,  2020, 11(1):
                 nanoalloys obtained from organometallic precursors in conventional   1-9.
                 organic solvents and in ionic liquids: Noble-metal-free  alkyne   [56]  GE X  H, REN  Z  H, CAO Y Q,  et al. Enhanced acetylene semi-
                 semihydrogenation catalysts[J]. Nanoscale, 2014, 6(10): 5532-5544.   hydrogenation on a subsurface carbon tailored Ni-Ga intermetallic
            [37]  RAI R K,  AWASTHI M K, SINGH V K,  et al. Aqueous  phase   catalyst[J]. Journal of Materials Chemistry A, 2022, 10(37): 19722-
                 semihydrogenation of alkynes  over  Ni-Fe bimetallic catalysts[J].   19731.
                 Catalysis Science & Technology, 2020, 10(15): 4968-4980.   [57]  BAKURU V  R, FAZL-UR-RAHMAN K, PERIYASAMY G,  et al.
            [38]  SHI X X, LIN Y, HUANG L,  et al. Copper catalysts in   Unraveling high alkene selectivity at full conversion  in alkyne
                 semihydrogenation of acetylene: From single atoms to nanoparticles[J].   hydrogenation over Ni under continuous flow conditions[J].
                 ACS Catalysis, 2020, 10(5): 3495-3504.            Catalysis Science & Technology, 2022, 12(17): 5265-5273.
            [39]  ZHOU Y N, SUN W J, CHU W, et al. Adsorption of acetylene on   [58]  SHI X Z, WEN X, NIE S L,  et al. Fabrication  of Ni 3N nanorods
                 ordered Ni xAg 1–x/Ni (111) and effect of  Ag-dopant: A DFT study[J].   anchored on N-doped carbon  for  selective semi-hydrogenation of
                 Applied Surface Science, 2018, 435: 521-528.      alkynes[J]. Journal of Catalysis, 2020, 382: 22-30.
            [40]  CHAI M Q, LIU X Y, LI L, et al. SiO 2-supported Au-Ni bimetallic   [59]  CARENCO S,  LEYVA-PEREZ  A, CONCEPCION P,  et al. Nickel
                 catalyst for the selective hydrogenation of acetylene[J]. Chinese   phosphide nanocatalysts for the chemoselective hydrogenation  of
                 Journal of Catalysis, 2017, 38(8): 1338-1346.     alkynes[J]. Nano Today, 2012, 7(1): 21-28.
            [41]  YANG B, BURCH R, HARDACRE C, et al. Origin of the increase   [60]  CHEN Y D,  LI C M, ZHOU J Y,  et al. Metal phosphides derived
                 of activity and selectivity of nickel  doped by Au, Ag, and Cu for   from hydrotalcite precursors toward the selective hydrogenation of
                 acetylene hydrogenation[J]. ACS Catalysis, 2012, 2(6): 1027-1032.   phenylacetylene[J]. ACS Catalysis, 2015, 5(10): 5756-5765.
            [42]  LIU H, CHAI M Q, PEI G X, et al. Effect of IB-metal on Ni/SiO 2   [61]  CHEN X, LI M, GUAN J C, et al. Nickel-silicon intermetallics with
                 catalyst for selective hydrogenation of acetylene[J]. Chinese Journal   enhanced selectivity in hydrogenation reactions of cinnamaldehyde
                 of Catalysis, 2020, 41(7): 1099-1108.             and phenylacetylene[J]. Industrial  & Engineering  Chemistry
            [43]  LIU Y N, ZHAO J Y, FENG J T, et al. Layered double hydroxide-   Research, 2012, 51(9): 3604-3611.
                 derived Ni-Cu  nanoalloy catalysts for  semi-hydrogenation  of   [62]  YANG K X, CHEN X, GUAN J C, et al. Nickel silicides prepared
                 alkynes: Improvement of  selectivity  and anti-coking ability  via   from organometallic polymer as efficient catalyst towards hydrogenation
                 alloying of Ni and Cu[J]. Journal of Catalysis, 2018, 359: 251-260.   of phenylacetylene[J]. Catalysis Today, 2015, 246: 176-183.
            [44]  ZHOU S Z,  KANG  L H, ZHOU X N,  et al. Pure  acetylene   [63]  YANG K  X, CHEN X,  WANG  L,  et al. SBA-15-supported metal
                 semihydrogenation over Ni-Cu bimetallic catalysts: Effect of the   silicides prepared by chemical vapor deposition as efficient catalysts
                 Cu/Ni ratio on catalytic performance[J]. Nanomaterials, 2020, 10(3):   towards the semihydrogenation of phenylacetylene[J]. ChemCatChem,
                 509-520.                                          2017, 9(7): 1337-1342.
            [45]  GU J, JIAN M Z, HUANG  L,  et al. Synergizing metal-support   [64] POLSHETTIWAR  V,  BARUWATI B,  VARMA  R S. Nanoparticle-
                 interactions and spatial confinement boosts dynamics of atomic   supported and magnetically recoverable nickel catalyst: A robust and
                 nickel for hydrogenations[J]. Nature Nanotechnology, 2021, 16(10):   economic hydrogenation and transfer hydrogenation protocol[J].
                 1141-1149.                                        Green Chemistry, 2009, 11(1): 127-131.
            [46]  PEI G X, LIU X Y, WANG A Q, et al. Selective hydrogenation of   [65]  BERNARDOS M  D, PEREZ-RODRIGUEZ S, GUAL  A,  et al.
                 acetylene in an  ethylene-rich stream over silica supported Ag-Ni   Facile synthesis of NHC-stabilized  Ni nanoparticles  and their
                 bimetallic  catalysts[J]. Applied Catalysis A: General, 2017, 545:   catalytic application in the Z-selective hydrogenation of alkynes[J].
                 90-96.                                            Chemical Communications, 2017, 53(56): 7894-7897.
            [47]  BRUNO J E, DWARICA N S, WHITTAKER T N, et al. Supported   [66]  DELGADO J A, BENKIRANE O, CLAVER C, et al. Advances in
                 Ni-Au colloid  precursors  for active, selective, and stable alkyne   the preparation of highly selective nanocatalysts for the semi-
                 partial hydrogenation catalysts[J]. ACS Catalysis, 2020, 10(4): 2565-   hydrogenation of  alkynes using colloidal approaches[J].  Dalton
                 2580.                                             Transactions, 2017, 46(37): 12381-12403.
            [48]  EGEBERG A, DIETRICH C, KIND C,  et al. Bimetallic nickel-   [67]  KONNERTH H, PRECHTL M H. Selective partial hydrogenation of
                 iridium and nickel-osmium alloy nanoparticles and their  catalytic   alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at
                 performance in hydrogenation reactions[J]. ChemCatChem, 2017,   near ambient conditions[J]. Chemical Communications, 2016, 52(58):
                 9(18): 3534-3543.                                 9129-9132.
            [49]  CHEN Y J, CHEN J X. Selective hydrogenation of acetylene on SiO 2          (下转第 2213 页)
   87   88   89   90   91   92   93   94   95   96   97