Page 150 - 《精细化工》2023年第11期
P. 150
·2462· 精细化工 FINE CHEMICALS 第 40 卷
prebiotic mannooligosaccharides[J]. Bioresource Technology, 2020, transformation method for Bacillus subtilis DB104[J]. Applied
311: 123482. Microbiology and Biotechnology, 2012, 94(2): 487-493.
[13] SRIVASTAVA P K, APPU RAO G A R, KAPOOR M. Metal- [27] HAEUSSLER M, SCHÖNIG K, ECKERT H, et al. Evaluation of
dependent thermal stability of recombinant endo-mannanase (ManB- off-target and on-target scoring algorithms and integration into the
1601) belonging to family GH 26 from Bacillus sp. CFR1601[J]. guide RNA selection tool CRISPOR[J]. Genome Biology, 2016,
Enzyme and Microbial Technology, 2016, 84: 41-49. 17(1): 148.
[14] NGUYEN H M, PHAM M L, STELZER E M, et al. Constitutive [28] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1
expression and cell-surface display of a bacterial β-mannanase in is a single RNA-guided endonuclease of a class 2 CRISPR-Cas
Lactobacillus plantarum[J]. Microbial Cell Factories, 2019, 18(1): system[J]. Cell, 2015, 163(3): 759-771.
76. [29] MILLER G L. Use of dinitrosalicylic acid reagent for determination
[15] LIU J Q, BASIT A, MIAO T, et al. Secretory expression of of reducing sugar[J]. Analytical Chemistry, 1959, 31(3): 420-428.
β-mannanase in Saccharomyces cerevisiae and its high efficiency for [30] TEUFEL F, ALMAGRO ARMENTEROS J J, JOHANSEN A R,
hydrolysis of mannans to mannooligosaccharides[J]. Applied et al. SignalP 6.0 predicts all five types of signal peptides using
Microbiology and Biotechnology, 2018, 102(23): 10027-10041. protein language models[J]. Nature Biotechnology, 2022, 40(7):
[16] XIA Y, CHEN W, ZHAO J X, et al. Construction of a new 1023-1025.
food-grade expression system for Bacillus subtilis based on theta [31] BLUM M, CHANG H Y, CHUGURANSKY S, et al. The InterPro
replication plasmids and auxotrophic complementation[J]. Applied protein families and domains database: 20 years on[J]. Nucleic Acids
Microbiology and Biotechnology, 2007, 76(3): 643-650. Research, 2021, 49(D1): D344-D354.
[17] HE W W, MU W M, JIANG B, et al. Food-grade expression of [32] YAN X X, AN X M, GUI L L, et al. From structure to function:
D-psicose 3-epimerase with tandem repeat genes in Bacillus Insights into the catalytic substrate specificity and thermostability
subtilis[J]. Journal of Agricultural and Food Chemistry, 2016, 64(28): displayed by Bacillus subtilis mannanase BCman[J]. Journal of
5701-5707. Molecular Biology, 2008, 379(3): 535-544.
[18] LIU Q T, JIN X R, FANG F, et al. Food-grade expression of an [33] WEBB B, SALI A. Protein structure modeling with MODELLER[J].
iron-containing acid urease in Bacillus subtilis[J]. Journal of Methods in Molecular Biology (Clifton, N. J.), 2021, 2199: 239-255.
Biotechnology, 2019, 293: 66-71. [34] RAKHSHANI H, DEHGHANIAN E, RAHATI A. Enhanced
[19] LIU Y F, LIU L, LI J H, et al. Synthetic biology toolbox and chassis GROMACS: Toward a better numeric framework al simulation[J].
development in Bacillus subtilis[J]. Trends in Biotechnology, 2019, Journal of Molecular Modeling, 2019, 25(12): 355.
37(5): 548-562. [35] EBERHARDT J, SANTOS-MARTINS D, TILLACK A F, et al.
[20] CHEN J Q, JIN Z X, GAI Y M, et al. A food-grade expression AutoDock Vina 1.2.0: New docking methods, expanded force field,
system for d-psicose 3-epimerase production in Bacillus subtilis and Python bindings[J]. Journal of Chemical Information and
using an alanine racemase-encoding selection marker[J]. Bioresources Modeling, 2021, 61(8): 3891-3898.
and Bioprocessing, 2017, 4(1): 9. [36] PORTER J L, RUSLI R A, OLLIS D L. Directed evolution of
[21] WU S C, WONG S L. Development of improved pUB110-based enzymes for industrial biocatalysis[J]. Chembiochem: A European
vectors for expression and secretion studies in Bacillus subtilis[J]. Journal of Chemical Biology, 2016, 17(3): 197-203.
Journal of Biotechnology, 1999, 72(1/2): 185-195. [37] BRON P A, BENCHIMOL M G, LAMBERT J, et al. Use of the alr
[22] KAWAMURA F, DOI R H. Construction of a Bacillus subtilis double gene as a food-grade selection marker in lactic acid bacteria[J].
mutant deficient in extracellular alkaline and neutral proteases[J]. Applied and Environmental Microbiology, 2002, 68(11): 5663-5670.
Journal of Bacteriology, 1984, 160(1): 442-444. [38] HE W W, MU W M, JIANG B, et al. Construction of a food grade
[23] WU Y K, LIU Y F, LV X Q, et al. CAMERS-B: CRISPR/Cpf1 recombinant Bacillus subtilis based on replicative plasmids with an
assisted multiple-genes editing and regulation system for Bacillus auxotrophic marker for biotransformation of D-fructose to
subtilis[J]. Biotechnology and Bioengineering, 2020, 117(6): 1817- D-allulose[J]. Journal of Agricultural and Food Chemistry, 2016,
1825. 64(16): 3243-3250.
[24] TIAN G (田庚), GAO W Q (高伟强), CHEN X B (陈晓波), et al. [39] CAPRIOTTI E, FARISELLI P, CASADIO R. I-Mutant 2.0:
Directed Mutagenesis of β-mannanase gene from Bacillus licheniformis Predicting stability changes upon mutation from the protein sequence
KD-1 for improving enzyme activity and stability[J]. Biotechnology or structure[J]. Nucleic Acids Research, 2005, 33 (Web Server issue):
Bulletin (生物技术通报), 2021, 37(10): 100-109. W306-W310.
[25] YOU C, ZHANG X Z, ZHANG Y H P. Simple cloning via direct [40] SONGSIRIRITTHIGUL C, LAPBOONRUENG S, ROYTRAKUL
transformation of PCR product (DNA Multimer) to Escherichia coli S, et al. Crystallization and preliminary crystallographic analysis of
and Bacillus subtilis[J]. Applied and Environmental Microbiology, β-mannanase from Bacillus licheniformis[J]. Acta Crystallographica
2012, 78(5): 1593-1595. Section F-Structural Biology and Crystallization Commol/Lunications,
[26] VOJCIC L, DESPOTOVIC D, MARTINEZ R, et al. An efficient 2011, 67(Part 2): 217-220.