Page 73 - 《精细化工》2023年第11期
P. 73

第 11 期                杨寒寒,等:  环氧烷烃与硫代内酯交替共聚制备聚酯硫醚及其性能                                   ·2385·


                 biodegradable  polyesters[J].  Acta Polymerica Sinica (高分子学报),   dihydrocoumarin and epoxides catalyzed by chromium salen complexes:
                 2020, 52(8): 777-790.                             A new route to functional polyesters[J]. Chemical Communications,
            [15]  ZHOU X (周曦),  ZHANG Z M (张志敏), WANG R  N (王若男),   2014, 50(48): 6322-6325.
                 et al. Preparation and properties of bio-based degradable fluorescent   [24]  WANG L Y, REN W M, LU X B, et al. Semiaromatic poly(thioester)
                 polyesters[J]. Fine Chemicals (精细化工), 2020, 37(1): 19-25.   from the copolymerization  of phthalic thioanhydride and epoxide:
            [16]  KLEMM E, SENSFUß S. Untersuchungen zum selbstinitiierungs-   Synthesis, structure, and properties[J]. Macromolecule, 2019, 52(6):
                 mechanismus der thiol/enpolymerisation[J]. Die Makromolekulare   2439-2445.
                 Chemie, 1991, 192(1): 159-164.                [25]  SONG L D, LIU M Q, XIONG H M, et al. Alternating chain growth
            [17]  MOELLER,  MARTIN. Polymer  science: A comprehensive   copolymerization of isothiocyanates and epoxides[J]. Macromolecules,
                 reference[M]. London: Elsevier Science, 2012: 309-330.   2021, 54(22): 10529-10536.
            [18]  IIIY N, MONGKHOUN E. Thiolactone chemistry, a versatile platform   [26]  HUANG M  H,  BAI D,  XIE H B,  et al. Facile preparation of
                 for macromolecular engineering[J]. Polymer Chemistry, 2022, 13(32):   polycarbonates from bio-based eugenol and 2-methoxy-4-vinylphenol[J].
                 4592-4614.                                        Polymer Chemistry, 2020, 11(32): 5133-5139.
            [19]  NISHIKUBO T, KAMEYAMA A, KAWAKAMI S. A novel synthesis   [27]  SARAPAS J M, TEW G N. Thiol-ene step-growth as a versatile route
                 of poly(ester-alt-sulfide)s by the ring-opening alternating copolymerization   to functional polymers[J]. Angewandte Chemie International Edition,
                 of oxiranes with γ-thiobutyrolactone using quaternary onium salts or   2016, 55(51): 15860-15863.
                 crown ether complexes as catalysts[J]. Macromolecules, 1998, 31(15):   [28]  REN  T, CHEN Q, NORTH M,  et al. Introducing the tishchenko
                 4746-4752.                                        reaction into sustainable polymer chemistry[J]. Green Chemistry,
            [20]  PUCHELLE  V,  LATREYTE Y, GIRARDOT M,  et al. Functional   2020, 22(5): 1542-1547.
                 poly(ester-alt-sulfide)s synthesized by organo-catalyzed anionic   [29]  HUANG C J (黄彩娟), HUANG M Q (黄梦倩), XIE H B (谢海波),
                 ring-opening alternating copolymerization of oxiranes and   et al. Synthesis and property of eugenol-based bisphenols and poly
                 γ-thiobutyrolactones[J]. Macromolecules, 2020, 53(13): 5188-5198.   (thioether carbonate)s[J]. Acta Polymerica Sinica (高分子学报),
            [21]  LUYER S L, QUIENNE B,  BOUZAID M,  et al. Bio-based poly   2022, 53(9): 1095-1103.
                 (ester-alt-thioether)s synthesized by organo-catalyzed ring-opening   [30]  BING K Y, YAN Z, YUE X, et al. Facile synthesis of ROS-responsive
                 copolymerizations of eugenol-based epoxides and N-acetyl homocysteine   biodegradable main chain poly(carbonate-thioether) copolymers[J].
                 thiolactone[J]. Royal Society of Chemistry, 2021, 23(19): 7743-7750.   Polymer Chemistry, 2018, 9(7): 904-911.
            [22]  IIIY N, PUCHELLE V, LUYER S L, et al. Alternating copolymerization   [31]  GUO X F (郭晓峰), LI J L (李佳林), WANG Y B (王宇博), et al.
                 of bio-based  N-acetylhomocysteine thiolactone and epoxides[J].   Research progress on synthesis and properties of sulfur-containing
                 European Polymer Journal, 2021, 153: 110490.      high refractive index optical resins[J]. Chinese Journal  of  Applied
            [23]  VAN ZEE N J, COATES G W. Alternating copolymerization of   Chemistry (应用化学), 2022, 39(5): 723-735.




            (上接第 2365 页)                                           Actuators B: Chemical, 2021, 334: 129625.
                                                               [74]  PENG Z Y, YU C Y, ZHONG W  B. Facile preparation of a 3D
            [67]  WANG H Q, LI J C, YU X, et al. Cellulose nanocrystalline hydrogel   porous aligned graphene-based wall network architecture by confined
                 based on a choline chloride deep eutectic solvent as wearable strain   self-assembly with shape  memory for artificial muscle, pressure
                 sensor for human motion[J]. Carbohydr Polym, 2021, 255: 117443.   sensor, and flexible supercapacitor[J]. ACS Applied Materials &
            [68]  LI M F, TU Q  Y, LONG X,  et al. Flexible conductive hydrogel   Interfaces, 2022, 14(15): 17739-17753.
                 fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose   [75]  BIAN C, WANG J, BAI X H, et al. Optical fiber based on humidity
                 nanofibrils, and lignin-based carbon applied as strain and pressure   sensor with  improved sensitivity for monitoring applications[J].
                 sensor[J]. International Journal of Biological Macromolecules, 2021,   Optics & Laser Technology, 2020, 130: 106342.
                 166: 1526-1534.                               [76]  SOBHANIMATIN M B, POURMAHDIAN S, TEHRANCHI M M.
            [69]  TONG  R P, CHEN G  X, PAN D H,  et al. Highly stretchable and   Colorimetric  monitoring of humidity by opal photonic hydrogel[J].
                 compressible cellulose ionic hydrogels for flexible strain sensors[J].   Polymer Testing, 2021, 98: 106999.
                 Biomacromolecules, 2019, 20(5): 2096–2104.    [77]  FU X T, JI H R, LIU X H, et al. Lignin-containing fibers extraction
            [70]  CHEN Z Y, YAN T, PAN Z J. Review of flexible strain sensors based   and hydrogel preparation for fiber-optic relative humidity sensor
                 on cellulose composites for multi-faceted applications[J]. Cellulose,   fabrication[J]. Industrial Crops and Products, 2021, 173: 114112.
                 2021, 28(2): 615-645.                         [78]  WANG  L R, XU  T L, ZHANG X  J. Multifunctional conductive
            [71]  WU J, WU Z, HAN S J, et al. Extremely deformable, transparent,   hydrogel-based flexible wearable sensors[J].  TrAC  Trends in
                 and high-performance gas sensor based on ionic conductive hydrogel   Analytical Chemistry, 2021, 134: 116130.
                 [J]. ACS Applied Materials & Interface, 2019, 11(2): 2364-2373.   [79]  BAI Z X, WANG X C, ZHENG M H, et al. Mechanically robust and
            [72]  LIU L C, FEI T, GUAN X, et al. Room temperature ammonia gas   transparent organohydrogel-based e-skin nanoengineered from
                 sensor based on ionic conductive biomass hydrogels[J]. Sensors and   natural skin[J]. Advanced Functional Materials, 2023, 33: 2212856.
                 Actuators B: Chemical, 2020, 320: 128318.     [80]  LIU W, XIE R J, ZHU J Y, et al. A temperature responsive adhesive
            [73]  LIU L C, FEI T, GUAN X, et al. Humidity-activated ammonia sensor   hydrogel for fabrication of flexible electronic sensors[J]. NPJ
                 with excellent selectivity for exhaled breath analysis[J]. Sensors and   Flexible Electronics, 2022, 6(1): 68.
   68   69   70   71   72   73   74   75   76   77   78