Page 73 - 《精细化工》2023年第11期
P. 73
第 11 期 杨寒寒,等: 环氧烷烃与硫代内酯交替共聚制备聚酯硫醚及其性能 ·2385·
biodegradable polyesters[J]. Acta Polymerica Sinica (高分子学报), dihydrocoumarin and epoxides catalyzed by chromium salen complexes:
2020, 52(8): 777-790. A new route to functional polyesters[J]. Chemical Communications,
[15] ZHOU X (周曦), ZHANG Z M (张志敏), WANG R N (王若男), 2014, 50(48): 6322-6325.
et al. Preparation and properties of bio-based degradable fluorescent [24] WANG L Y, REN W M, LU X B, et al. Semiaromatic poly(thioester)
polyesters[J]. Fine Chemicals (精细化工), 2020, 37(1): 19-25. from the copolymerization of phthalic thioanhydride and epoxide:
[16] KLEMM E, SENSFUß S. Untersuchungen zum selbstinitiierungs- Synthesis, structure, and properties[J]. Macromolecule, 2019, 52(6):
mechanismus der thiol/enpolymerisation[J]. Die Makromolekulare 2439-2445.
Chemie, 1991, 192(1): 159-164. [25] SONG L D, LIU M Q, XIONG H M, et al. Alternating chain growth
[17] MOELLER, MARTIN. Polymer science: A comprehensive copolymerization of isothiocyanates and epoxides[J]. Macromolecules,
reference[M]. London: Elsevier Science, 2012: 309-330. 2021, 54(22): 10529-10536.
[18] IIIY N, MONGKHOUN E. Thiolactone chemistry, a versatile platform [26] HUANG M H, BAI D, XIE H B, et al. Facile preparation of
for macromolecular engineering[J]. Polymer Chemistry, 2022, 13(32): polycarbonates from bio-based eugenol and 2-methoxy-4-vinylphenol[J].
4592-4614. Polymer Chemistry, 2020, 11(32): 5133-5139.
[19] NISHIKUBO T, KAMEYAMA A, KAWAKAMI S. A novel synthesis [27] SARAPAS J M, TEW G N. Thiol-ene step-growth as a versatile route
of poly(ester-alt-sulfide)s by the ring-opening alternating copolymerization to functional polymers[J]. Angewandte Chemie International Edition,
of oxiranes with γ-thiobutyrolactone using quaternary onium salts or 2016, 55(51): 15860-15863.
crown ether complexes as catalysts[J]. Macromolecules, 1998, 31(15): [28] REN T, CHEN Q, NORTH M, et al. Introducing the tishchenko
4746-4752. reaction into sustainable polymer chemistry[J]. Green Chemistry,
[20] PUCHELLE V, LATREYTE Y, GIRARDOT M, et al. Functional 2020, 22(5): 1542-1547.
poly(ester-alt-sulfide)s synthesized by organo-catalyzed anionic [29] HUANG C J (黄彩娟), HUANG M Q (黄梦倩), XIE H B (谢海波),
ring-opening alternating copolymerization of oxiranes and et al. Synthesis and property of eugenol-based bisphenols and poly
γ-thiobutyrolactones[J]. Macromolecules, 2020, 53(13): 5188-5198. (thioether carbonate)s[J]. Acta Polymerica Sinica (高分子学报),
[21] LUYER S L, QUIENNE B, BOUZAID M, et al. Bio-based poly 2022, 53(9): 1095-1103.
(ester-alt-thioether)s synthesized by organo-catalyzed ring-opening [30] BING K Y, YAN Z, YUE X, et al. Facile synthesis of ROS-responsive
copolymerizations of eugenol-based epoxides and N-acetyl homocysteine biodegradable main chain poly(carbonate-thioether) copolymers[J].
thiolactone[J]. Royal Society of Chemistry, 2021, 23(19): 7743-7750. Polymer Chemistry, 2018, 9(7): 904-911.
[22] IIIY N, PUCHELLE V, LUYER S L, et al. Alternating copolymerization [31] GUO X F (郭晓峰), LI J L (李佳林), WANG Y B (王宇博), et al.
of bio-based N-acetylhomocysteine thiolactone and epoxides[J]. Research progress on synthesis and properties of sulfur-containing
European Polymer Journal, 2021, 153: 110490. high refractive index optical resins[J]. Chinese Journal of Applied
[23] VAN ZEE N J, COATES G W. Alternating copolymerization of Chemistry (应用化学), 2022, 39(5): 723-735.
(上接第 2365 页) Actuators B: Chemical, 2021, 334: 129625.
[74] PENG Z Y, YU C Y, ZHONG W B. Facile preparation of a 3D
[67] WANG H Q, LI J C, YU X, et al. Cellulose nanocrystalline hydrogel porous aligned graphene-based wall network architecture by confined
based on a choline chloride deep eutectic solvent as wearable strain self-assembly with shape memory for artificial muscle, pressure
sensor for human motion[J]. Carbohydr Polym, 2021, 255: 117443. sensor, and flexible supercapacitor[J]. ACS Applied Materials &
[68] LI M F, TU Q Y, LONG X, et al. Flexible conductive hydrogel Interfaces, 2022, 14(15): 17739-17753.
fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose [75] BIAN C, WANG J, BAI X H, et al. Optical fiber based on humidity
nanofibrils, and lignin-based carbon applied as strain and pressure sensor with improved sensitivity for monitoring applications[J].
sensor[J]. International Journal of Biological Macromolecules, 2021, Optics & Laser Technology, 2020, 130: 106342.
166: 1526-1534. [76] SOBHANIMATIN M B, POURMAHDIAN S, TEHRANCHI M M.
[69] TONG R P, CHEN G X, PAN D H, et al. Highly stretchable and Colorimetric monitoring of humidity by opal photonic hydrogel[J].
compressible cellulose ionic hydrogels for flexible strain sensors[J]. Polymer Testing, 2021, 98: 106999.
Biomacromolecules, 2019, 20(5): 2096–2104. [77] FU X T, JI H R, LIU X H, et al. Lignin-containing fibers extraction
[70] CHEN Z Y, YAN T, PAN Z J. Review of flexible strain sensors based and hydrogel preparation for fiber-optic relative humidity sensor
on cellulose composites for multi-faceted applications[J]. Cellulose, fabrication[J]. Industrial Crops and Products, 2021, 173: 114112.
2021, 28(2): 615-645. [78] WANG L R, XU T L, ZHANG X J. Multifunctional conductive
[71] WU J, WU Z, HAN S J, et al. Extremely deformable, transparent, hydrogel-based flexible wearable sensors[J]. TrAC Trends in
and high-performance gas sensor based on ionic conductive hydrogel Analytical Chemistry, 2021, 134: 116130.
[J]. ACS Applied Materials & Interface, 2019, 11(2): 2364-2373. [79] BAI Z X, WANG X C, ZHENG M H, et al. Mechanically robust and
[72] LIU L C, FEI T, GUAN X, et al. Room temperature ammonia gas transparent organohydrogel-based e-skin nanoengineered from
sensor based on ionic conductive biomass hydrogels[J]. Sensors and natural skin[J]. Advanced Functional Materials, 2023, 33: 2212856.
Actuators B: Chemical, 2020, 320: 128318. [80] LIU W, XIE R J, ZHU J Y, et al. A temperature responsive adhesive
[73] LIU L C, FEI T, GUAN X, et al. Humidity-activated ammonia sensor hydrogel for fabrication of flexible electronic sensors[J]. NPJ
with excellent selectivity for exhaled breath analysis[J]. Sensors and Flexible Electronics, 2022, 6(1): 68.