Page 171 - 《精细化工》2023年第12期
P. 171

第 12 期                      邵越楣,等:  不同超声辅助提取桂花黄酮及其抑菌性                                   ·2713·


            的重要方面,与致病性和在宿主内稳定性存在密切                                 Profuse diversity and acidogenicity of the candida-biome of deep
                                                                   carious lesions of severe early childhood caries (S-ECC)[J]. Journal
            相关,生物膜的存在与抗药性真菌和重复感染也有                                 of Oral Microbiology, 2021, 13(1): 1964277.
            很大关系     [24] 。本实验通过 XTT 还原法研究了桂花黄                 [2]   ANIL S, ANAND P S. Early  childhood caries: Prevalence, risk
                                                                   factors, and prevention[J]. Frontiers in Pediatrics, 2017, 5: 157.
            酮对生物膜早期形成的抑制作用。如图 4 所示,与                           [3]   NDEKERO T S, CARNEIRO L C, MASUMO R M. Prevalence of
            对照组相比,不同品种的桂花黄酮对 C. albicans 的                         early  childhood caries, risk factors and nutritional status among
                                                                   3~5-year-old preschool children in Kisarawe, Tanzania[J]. Plos One,
            生物膜形成都有显著的抑制作用,但 4 个品种之间                               2021, 16(2): e0247240.
            没有显著性差异。当处理 4 h 后,丹桂黄酮对 C.                         [4]   KAZEMINIA  M,  ABDI A, SHOHAIMI S,  et al. Dental caries in
                                                                   primary and permanent teeth in children’s worldwide, 1995 to 2019:
            albicans 生物膜的抑制率最高,可达 46.59%;随着                        A systematic review and meta-analysis[J]. Head & Face  Medicine,
            时间的推移,4 种桂花黄酮对生物膜的抑制作用减                                2020, 16(1): 1-21.
                                                               [5]   PITTS N B. Caries and collaborations in context[J]. British Dental
            弱;处理 24 h 后,四季桂黄酮对生物膜的抑制率最
                                                                   Journal, 2021, 231(12): 737-740.
            高,为 24.85%。说明桂花黄酮可抑制早期形成的生                         [6]   KLINKE T, KNEIST S, DE SOET J J, et al. Acid production by oral
            物膜,抑制率最高可达 46.59%;但对于成熟生物膜                             strains of  Candida albicans and  lactobacilli[J]. Caries Research,
                                                                   2009, 43(2): 83-91.
            的影响较弱,其机制可能与其抑制酵母菌的菌丝转                             [7]   FU C C, XU F Y, QIAN  Y  C,  et al. Secondary metabolites of
                                                                   Osmanthus fragrans: Metabolism and medicinal value[J]. Frontiers
            化有关,且不同品种之间没有显著性差异。结果表
                                                                   in Pharmacology, 2022, 13: 922204.
            明,MIC 的桂花黄酮对生物膜形成的抑制率低于抑                           [8]   YU J F, LOU Q,  ZHENG X  Y,  et al. Sequential combination of
            制浮游菌,表明抑制生物膜形成所需的桂花黄酮浓                                 microwave- and ultrasound-assisted extraction of total flavonoids from
                                                                   Osmanthus fragrans Lour. flowers[J]. Molecules, 2017, 22(12): 2216.
            度要远高于抑制浮游菌,显示出生物膜独特的生理                             [9]   CHAN B C L, IP M, GONG H, et al. Synergistic effects of diosmetin
            现象和耐药性       [25] 。                                    with erythromycin against ABC transporter over-expressed methicillin-
                                                                   resistant  Staphylococcus aureus (MRSA) RN4220/pUL5054 and
                                                                   inhibition of MRSA pyruvate kinase[J]. Phytomedicine, 2013, 20(7):
            3   结论                                                 611-614.
                                                               [10]  WANG J X, SHI Y, JING S S, et al. Astilbin inhibits the activity of
                 本文通过实验对比了桂花黄酮的 3 种提取方法                            sortase a from Streptococcus mutans[J]. Molecules, 2019, 24(3): 465.
                                                               [11]  SU X J (苏学军), XU Y (徐颖), ZONG C Y (宗春燕), et al. Research
            (超声提取法、超声辅助酶提取法和超声辅助双水                                 progress on extraction technology of bioactive components and total
            相提取法),得到提取率最高的方法为超声提取法,                                flavonoids from fig leaves[J]. Chemical Engineer (化学工程师),
                                                                   2023, 37(2): 62-65.
            进而通过单因素和响应面优化实验对提取工艺条件                             [12]  SONG H D, YANG R J, ZHAO  W,  et al. Innovative assistant
            进行优化,得到最佳条件为温度 50  ℃、液固比                               extraction of flavonoids from pine (Larix olgensis Henry) needles by
                                                                   high-density steam flash-explosion[J]. Journal of Agricultural and
            17 mL/g、乙醇体积分数 52%,在该条件下,金桂、                           Food Chemistry, 2014, 62(17): 3806-3812.
            银桂、丹桂、四季桂的提取率分别为 13.88%±0.29%、                     [13]  CHEN  L N (陈丽楠), PENG F (彭飞), JIN C Y (靳长迎),  et al.
                                                                   Extraction optimization by response surface  methodology of active
            8.79%±0.56%、13.16%±0.33%和 10.28%±0.41%。UPLC-           ingredients from chestnut burs for Shigella dysenteriae inhibition[J].
            MS/MS 结果表明,桂花黄酮中含有白麻苷、6-羟基                             Fine Chemicals (精细化工), 2023, 40(1): 101-108.
                                                               [14]  SUN D D, ZHANG W W, LYU M T, et al. Antibacterial activity of
            山奈酚-3,6-O-二葡萄糖苷、芦丁、槲皮素-3-O-葡萄                          ruthenium( Ⅱ ) polypyridyl complex manipulated  by  membrane
            糖苷-7-O-鼠李糖苷、槲皮素-3-O-新橘皮糖苷、槲皮                           permeability and cell  morphology[J]. Bioorganic & Medicinal
                                                                   Chemistry Letters, 2015, 25(10): 2068-2073.
            素-3-O-洋槐糖苷等 211 种化合物。以 C. albicans 为               [15]  CHENG X M, YANG Y, ZHU X G, et al. Inhibitory mechanisms of
            研究对象,测得不同品种桂花黄酮对 C. albicans 的                         cinnamic  acid on the growth of  Geotrichum citri-aurantii[J]. Food
                                                                   Control, 2022, 131: 108459.
            抑菌效果,其中金桂的抑菌效果最好,MIC 值为 1.50                       [16]  WANG Y, LIU X Y, CHEN T, et al. Antifungal effects of hinokitiol
            g/L。对于菌体细胞膜的通透性测定显示,在桂花黄                               on development of Botrytis cinerea in vitro and in vivo[J]. Postharvest
                                                                   Biology and Technology, 2020, 159: 111038.
            酮处理 C. albicans 24 h 内,菌体细胞的细胞膜结构
                                                               [17]  CHANDRA J, MUKHERJEE P K, LEIDICH S D, et al. Antifungal
            遭到一定破坏,使得电导率升高、核酸和蛋白等内                                 resistance of candidal biofilms formed on denture acrylic in vitro[J].
                                                                   Journal of Dental Research, 2001, 80(3): 903-911.
            容物泄漏。桂花黄酮对于初期生物膜的抑制效果较                             [18]  SHANG F D (尚富德). A study on the biology of  Osmanthus
            好,其中丹桂黄酮的抑制率最高,可达 46.59%;到                             fragrans Lour.[D]. Nanjing: Nanjing Forestry University (南京林业
                                                                   大学), 2004.
            后期生物膜逐渐成熟,抑制作用逐渐减弱。本研究
                                                               [19]  WU X Q (吴枭锜) Study on antioxidant activity of ethanol extract of
            为天然化合物抑制 C. albicans 的效果提供了参考,                         Dictyophora[D]. Fuzhou: Fujian Agriculture and Forestry University
            下一步可研究桂花黄酮中的单体成分对 C. albicans                          (福建农林大学), 2014.
                                                               [20]  WANG W J, DENG L L, YAO S X, et al. Control of green and blue
            的抑制效果,探究发挥抑菌效果的主要化合物,并                                 mold and sour rot in citrus fruits by the cationic antimicrobial peptide
            深入发掘其抑菌机制。                                             PAF56[J]. Postharvest Biology and Technology, 2018, 136: 132-138.
                                                               [21]  LIU S, WANG W J, DENG L L, et al. Control of sour rot in citrus
                                                                   fruit by three insect antimicrobial peptides[J]. Postharvest Biology
            参考文献:                                                  and Technology, 2019, 149: 200-208.
            [1]   FAKHRUDDIN K S, SAMARANAYAKE  L P, EGUSA H,  et al.                        (下转第 2730 页)
   166   167   168   169   170   171   172   173   174   175   176