Page 152 - 《精细化工》2023年第5期
P. 152

·1072·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 biodiesel yield during transesterification process using response   2020, 22(11): 3572-3583.
                 surface methodology[J]. Fuel, 2017, 190: 104-112.   [14]  LUO J X (罗建新), YANG W H (颜文海), MA Q (马青), et al. Study
            [3]   AVHAD M R, MARCHETTI J M. A review on recent advancement   on high activity monodispersed sulfonated porous polystyrene
                 in catalytic  materials for biodiesel production[J]. Renewable and   microspheres for preparation of biodiesel[J]. Acta Chimica Sinica (化
                 Sustainable Energy Reviews, 2015, 50: 696-718.    学学报), 2019, 77(1): 54-59.
            [4]   LIU F, HUANG K, ZHENG A, et al. Hydrophobic solid acids and   [15]  WEN F, ZHANG W, ZHENG P,  et al. One-stage synthesis of
                 their catalytic applications in green and sustainable chemistry[J].   narrowly dispersed polymeric core-shell microspheres[J]. Journal of
                 ACS Catalysis, 2018, 8(1): 372-391.               Polymer Science Part A: Polymer Chemistry, 2008, 46(4): 1192-1202.
            [5]   LIU X B, MAO  Y H,  YU S  Y,  et al. An efficient and recyclable   [16]  LIANG Y, ABDELRAHMAN  A I, BARANOV V,  et al. The
                 Pickering magnetic interface biocatalyst: Application in biodiesel   synthesis  and  characterization of lanthanide-encoded poly(styrene-co-
                 production[J]. Green Chemistry, 2021, 23: 966-972.   methacrylic acid) microspheres[J]. Polymer, 2011, 52(22): 5040-5052.
            [6]   PENG W L, HAO P, LUO J H,  et al. Guanidine-functionalized   [17]  ZHANG C Y, LUO J X, OU L  J,  et al. Fluorescent porous
                 amphiphilic silica nanoparticles as a Pickering interfacial catalyst for   carbazole-decorated copolymer  monodisperse microspheres: Facile
                 biodiesel production[J].  Industrial & Engineering Chemistry Research,   synthesis, selective and recyclable detection of iron (Ⅲ) in aqueous
                 2020, 59: 4273-4280.                              medium[J]. Chemistry-A European Journal, 2018, 24(12): 3030-3037.
            [7]   ZOU N, LIN  X C, LI M T,  et al. Ionic liquid@amphiphilic silica   [18]  PEACH S. Coagulative nucleation in surfactant-free emulsion
                 nanoparticles: Novel catalysts for converting waste cooking  oil  to   polymerization[J]. Macromolecules, 1998, 31(10): 3372-3373.
                 biodiesel[J]. ACS  Sustainable Chemistry & Engineering, 2020, 8:   [19]  KANG K, KAN C, DU Y, et al. Study on soap-free P(MMA-EA-AA
                 18054-18061.                                      or MAA) latex particles with narrow size distribution[J]. Polymers
            [8]   IBRAHIM S F, MIJAN N A, IBRAHIM M L,  et al. Sulfonated   for Advanced Technologies, 2006, 17(3): 193-198.
                 functionalization of carbon derived corncob residue via hydrothermal   [20]  LIU S J (刘少杰), DU H L (杜慧丽), CUI X F (崔笑菲). Catalytic
                 synthesis route for esterification of  palm fatty acid distillate[J].   synthesis of ethyl  N-phenylformimidate by surface  sulfonated
                 Energy Conversion and Management, 2020, 210: 112698.   polystyrene microspheres [J]. Fine Chemicals (精细化工), 2017,
            [9]   LI H, DENG Q, CHEN H, et al. Benzenesulfonic acid functionalized   34(12): 1385-1389.
                 hydrophobic mesoporous biochar as an efficient catalyst for the   [21]  LUO J X, ZHANG X C, ZHANG C Y, et al. Highly stable, active
                 production of biofuel[J]. Applied Catalysis A: General, 2019, 580: 178-185.   and recyclable solid acid catalyst based on polymer-coated magnetic
            [10]  GUAN Q Q, LI Y, CHEN Y, et al. Sulfonated multi-walled carbon   composite particles[J]. Chinese Chemical Letters, 2019, 30(12):
                 nanotubes  for  biodiesel  production  through  triglycerides  2043-2046.
                 transesterification[J]. RSC Advances, 2017, 7(12): 7250-7258.   [22]  LI M T (李梦天), JIANG P P (蒋平平), ZHANG P B (张萍波), et al.
            [11]  ARAUJO R O,  CHAAR J D S, QUEIROZ  L S,  et al. Low   Preparation of carbon-based solid acid catalyst and its catalytic
                 temperature sulfonation of acai stone biomass derived carbons as   performance for synthesis of methyl oleate[J]. Fine Chemicals (精细
                 acid catalysts for esterification reactions[J]. Energy Conversion and   化工), 2018, 35(4): 638-644.
                 Management, 2019, 196: 821-830.               [23]  ZHANG C Y, LUO J X, YU Y S, et al. Building carbazole-decorated
            [12]  PAN H,  LIU X F, ZHANG H,  et al. Multi-SO 3H functionalized   styrene-acrylic  copolymer latexes and films for iron ( Ⅲ ) ion
                 mesoporous polymeric acid catalyst for biodiesel production and   detection[J]. Colloids and Surfaces A: Physicochemical and
                 fructose-to-biodiesel additive conversion[J]. Renewable Energy,   Engineering Aspects, 2021, 629: 127487.
                 2017, 107: 245-252.                           [24]  CHENG K (程珂), ZHANG J H (张江华), ZHANG W (张伟), et al.
            [13]  SONG W, ZHANG Y,  VARYAMBATH A,  et al. Sulfonic acid   Synthesis of structured phospholipids rich in short-chain fatty acids
                 modified hollow polymer nanospheres with tunable wall-thickness   catalyzed by sulfonic acid-functionalized C/Si  materials[J]. Fine
                 for improving  biodiesel synthesis efficiency[J].  Green Chemistry,   Chemicals (精细化工), 2021, 38(8): 1667-1672.





            (上接第 1054 页)                                           biocatalysis[J]. J Agric Food Chem, 2019, 67: 2946-2953.
            [9]   JIA Y Y, XIE Y L, YANG L L, et al. Expression of novel L-leucine   [15]  TANG C D, SHI H L, JIAO Z J, et al. Exploitation of cold-active
                 dehydrogenase and high-level production of L-leucine catalyzed by   cephalosporin cacylase by computer-aided directed evolution and its
                 engineered  Escherichia coli[J]. Frontiers in Bioengineering and   potential  application  in  low-temperature  biosynthesis  of
                 Biotechnology, 2021, 9: 655522.                   7-aminocephalosporanic acid[J]. J Chem Technol Biotechnol, 2018,
            [10]  TANG C  D, ZHANG Z H, SHI H L,  et al. Directed evolution of   93: 2925-2930.
                 formate dehydrogenase and its application in the biosynthesis of   [16] CHEN  L  (陈林). Rational design and modification  of  allosteric
                 L-phenylglycine from phenylglyoxylic acid[J]. Molecular Catalysis,   regulation of threonine deaminase from Escherichia coli[D]. Tianjin:
                 2021, 513: 111666.                                Tianjin University (天津大学), 2012.
            [11]  XU X (徐娴), JIA H H (贾红华), HE B F (何冰芳), et al. High level   [17]  WANG J (王棘), ZHAN X Y (战祥友), TENG Y K (滕艳坤), et al.
                 expression of  formate dehydrogenase gene in  Escherichia coli   Determination  of amino acids in aminopeptide by RP-HPLC with
                 Rosetta[J]. Food and Fermentation Industry (食品与发酵工业),   DNFB  precolumn  derivatization[J].  Journal  of  Shenyang
                 2007, 33 (5): 5-8.                                Pharmaceutical University (沈阳药 科大学 学报), 2003, 20(6):
            [12]  ZHANG Z  H (张振华), XIE Y L (解玉丽), WANG T J (王铁军),   428-430.
                 et al. Directed  evolution of catalytic activity of formate   [18]  CHEN J J, ZHU  R, ZHOU J,  et al. Efficient single whole-cell
                 dehydrogenase and its high expression[J]. Applied Chemistry (应用  biotransformation for L-2-aminobutyric acid production through
                 化学), 2021, 38(6): 704-712.                        engineering of leucine dehydrogenase combined with expression
            [13]  LI J, PAN J, ZHANG J,  et al. Stereoselective synthesis  of   regulation[J]. Bioresour Technol, 2021, 326: 124665.
                 L-tert-leucine  by a newly cloned leucine dehydrogenase from   [19]  XU J M (徐建妙), CHEN C (陈策), ZHANG  B (张博),  et al.
                 Exiguobacterium sibiricum[J]. Journal of Molecular Catalysis B:   Optimization of  fermentation conditions for the co-expression of
                 Enzymatic, 2014, 105: 11-17.                      leucine dehydrogenase and formic dehydrogenase and its application
            [14]  TANG  C D, DING P J, SHI H L, et al. One-pot synthesis of   in the synthesis of L-2-aminobutyric acid[J]. Food and Fermentation
                 phenylglyoxylic acid from racemic  mandelic acids  via  cascade   Industry (食品与发酵工业), 2019, 45(10): 29-35.
   147   148   149   150   151   152   153   154   155   156   157