Page 56 - 《精细化工》2023年第5期
P. 56
·976· 精细化工 FINE CHEMICALS 第 40 卷
CO 2 吸附和活化于一体,对工业实际生产具有应用 [8] LIU D, LIU B, PAN Z, et al. Rare-earth metal catalysts for alkene
前景。 hydrosilylation[J]. Science China Chemistry, 2019, 62(5): 571-582.
[9] OBLIGACION J V, CHIRIK P J. Earth-abundant transition metal
虽然 MOFs 材料在促进 CO 2 硅氢加成反应的发 catalysts for alkene hydrosilylation and hydroboration: Opportunities
展中提供了很大助力,但这些 CO 2 的硅氢加成反应 and assessments[J]. Nature Reviews Chemistry, 2018, 2(5): 15-34.
[10] RADCHENKO A V, GANACHAUD F. Photocatalyzed hydrosilylation
最常使用的硅烷仍是稳定且昂贵的苯基硅烷,甚至 in silicone chemistry[J]. Industrial & Engineering Chemistry Research,
在反应过程中硅烷只能还原少量的 CO 2 ,相对比较 2022, 61(23): 7679-7698.
便宜的硅烷如聚甲基氢硅氧烷(PMHS)作为还原 [11] RAYA-BARÓN Á, OÑA-BURGOS P, FERNÁNDEZ I. Iron-catalyzed
homogeneous hydrosilylation of ketones and aldehydes: Advances
CO 2 的反应原料还有待开发。 and mechanistic perspective[J]. ACS Catalysis, 2019, 9(6): 5400-
5417.
4 结束语与展望 [12] KALMUTZKI M J, HANIKEL N, YAGHI O M. Secondary building
units as the turning point in the development of the reticular
chemistry of MOFs[J]. Science Advances, 2018, 4(10): eaat 9180.
MOFs 材料在各种类型的硅氢加成反应中表现
[13] HU T, TANG L, FENG H, et al. Metal-organic frameworks (MOFs)
出巨大的研究与应用价值,但大部分研究集中在催 and their derivatives as emerging catalysts for electro-Fenton process
化一些简单不饱和化合物与硅烷的硅氢加成反应, in water purification[J]. Coordination Chemistry Reviews, 2022, 451:
214277-214301.
针对有机硅行业合成生产中常见的带官能团的硅烷 [14] DIN I U, USMAN M, KHAN S, et al. Prospects for a green methanol
偶联剂、内烯烃、不饱和羰基化合物或黏性较大的 thermo-catalytic process from CO 2 by using MOFs based materials:
A mini-review[J]. Journal of CO 2 Utilization, 2021, 43: 101361-
硅油产物的研究较少,可能的原因有以下两点:(1)
101374.
一些带官能团的硅烷偶联剂、内烯烃、不饱和羰基 [15] AHMAD A, KHAN S, TARIQ S, et al. Self-sacrifice MOFs for
化合物合成过程中副产物相对较多,选择性低,对 heterogeneous catalysis: Synthesis mechanisms and future perspectives[J].
Materials Today, 2022, 55: 137-169.
活性位点周围环境要求比较复杂;(2)黏性较大的 [16] MA X, LIU F, HELIAN Y, et al. Current application of MOFs based
反应体系中容易出现活性物种的流失,从而降低催 heterogeneous catalysts in catalyzing transesterification/esterification
for biodiesel production: A review[J]. Energy Conversion and
化剂的使用寿命。近年来,单原子催化剂由于其独
Management, 2021, 229: 113760-113773.
特的催化特性受到人们的关注,通过结合 MOFs 材 [17] WANG T, CAO X, JIAO L. MOFs-derived carbon-based metal
料孔道本身的限域作用与单原子的量子尺寸效应, catalysts for energy-related electrocatalysis[J]. Small, 2021, 17(22):
2004398-2004417.
从而提高反应的选择性,以达到拓宽反应底物范围 [18] OTUN K O, LIU X, HILDEBRANDT D. Metal-organic framework
的目的,可能是未来硅氢加成反应催化剂的潜在发 (MOF)-derived catalysts for fischer-tropsch synthesis: Recent
展方向之一。此外,还可通过共价键或离子键锚定 progress and future perspectives[J]. Journal of Energy Chemistry, 2020,
51: 230-245.
活性物种的方式减少活性物种在一些黏性较大的反 [19] METZGER E D, COMITO R J, WU Z, et al. Highly selective
应中的流失,提高催化剂的使用寿命。 heterogeneous ethylene dimerization with a scalable and chemically
robust MOF catalyst[J]. ACS Sustainable Chemistry & Engineering,
参考文献: 2019, 7(7): 6654-6661.
[20] SOMMER L H, PIERS W E, WHITMORE F C. Peroxide-catalyzed
[1] ADDIS D, DAS S, JUNGE K, et al. Selective reduction of carboxylic addition of trichlorosilane to 1-octene[J]. Journal of the American
acid derivatives by catalytic hydrosilylation[J]. Angewandte Chemie Chemical Society, 1947, 69: 188.
International Edition, 2011, 50(27): 6004-6011. [21] DAI Z, YU Z, BAI Y, et al. Cobalt bis(2-ethylhexanoate) and
[2] OESTREICH M. Transfer hydrosilylation[J]. Angewandte Chemie terpyridine derivatives as catalysts for the hydrosilylation of olefins
International Edition, 2016, 55(2): 494-499. [J]. Applied Organometallic Chemistry, 2020, 35(1): 6027-6035.
[3] SPEIER J L, WEBSTER J A, BARNES G H. The addition of silicon [22] SCHUHKNECHT D, SPANIOL T P, MARON L, et al.
hydrides to olefinic double bonds. Part Ⅱ. The use of group Ⅷ Regioselective hydrosilylation of olefins catalyzed by a molecular
metal catalysts[J]. Journal of the American Chemical Society, 2002, calcium hydride cation[J]. Angewandte Chemie International Edition,
79(4): 974-979. 2020, 59(1): 310-314.
[4] KARSTEDT B. Platinum complexes of unsaturated siloxanes and [23] JOHN J, GRAVEL E, HAGEGE A, et al. Catalytic oxidation of
platinum containing organopolysiloxanes: US3775452DA[P]. 1973- silanes by carbon nanotube-gold nanohybrids[J]. Angewandte chemie
11-27. International Edition, 2011, 50(33): 7533-7536.
[5] DE ALMEIDA L D, WANG H, JUNGE K, et al. Recent advances in [24] GALEANDRO-DIAMANT T, SAYAH R, ZANOTA M L, et al. Pt
catalytic hydrosilylations: Developments beyond traditional platinum nanoparticles immobilized in mesostructured silica: A non-leaching
catalysts[J]. Angewandte Chemie International Edition, 2021, 60(2): catalyst for 1-octene hydrosilylation[J]. Chemical Communications,
550-565. 2017, 53(20): 2962-2965.
[6] GULYAEVA E S, OSIPOVA E S, BUHAIBEH R, et al. Towards [25] WALCZAK M, STEFANOWSKA K, FRANCZYK A, et al.
ligand simplification in manganese-catalyzed hydrogenation and Hydrosilylation of alkenes and alkynes with silsesquioxane
hydrosilylation processes[J]. Coordination Chemistry Reviews, 2022, (HSiMe 2O)(i-Bu) 7Si 8O 12 catalyzed by Pt supported on a styrene-
458: 214421-214457. divinylbenzene copolymer[J]. Journal of Catalysis, 2018, 367: 1-6.
[7] KUCIŃSKI K, HRECZYCHO G. Hydrosilylation and hydroboration [26] CHAUHAN B P S, SARKAR A. Functionalized vinylsilanes via
in a sustainable manner: From earth-abundant catalysts to catalyst- highly efficient and recyclable Pt-nanoparticle catalysed hydrosilylation
free solutions[J]. Green Chemistry, 2020, 22(16): 5210-5224. of alkynes[J]. Dalton Transactions, 2017, 46(27): 8709-8715.